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Analysis of Extreme Marine Events Causing Flooding in Varna Region 

Introduction  
 

Flood risk is defined as the combination of the 

probability of a flood event and of the potential 

adverse consequences to human health, the 

environment and economic activity associated with 

the event. For a risk to arise there must be a hazard 

that consists of a source or initiating event, a receptor 

(person or property) and a pathway that links the 

receptor to the source. For coastal areas, the hazards 
that contribute to the risk of flooding are related to the 

water surface elevation process. High wave conditions 

and high sea levels offshore and transformed to 

nearshore are typically considered as the “source” of 

coastal flooding. Description of risk sources will help 

to deliver the hydraulic boundary conditions which 

are needed to describe the loading of flood defence 

structures or will already be the key input for the 

probability of flooding. 

Flood risk sources in coastal areas are associated 

to the occurrence of extreme marine events (wave 
climate and storm surge events). Some recent floods 

can be classified as extreme events with a recurrence 

interval of once in a hundred years or less. Extreme 

value methods are powerful statistical methods for 

drawing inference about the extremes of a process, 

using only data on relatively extreme values of the 

process. Extreme value methods are usually utilized 

for the purpose of extrapolation to levels more 

extreme than those which have been observed. The 

statistical methodology is motivated by a well-

established mathematical theory (Extreme Value 

Theory - EVT), which relies on the assumption that 

the limiting models suggested by the asymptotic 

theory continue to hold at finite but extreme levels. 

Nevertheless, a crucial assumption in fitting 

distribution functions to data is that the data are 

independent and identically distributed (iid).   
Univariate extreme value theory includes models 

for block maxima, as well as models for exceedances 

over appropriately defined thresholds known as peaks 

over threshold (POT) models. Use of the block 

maximum model for statistical applications seems to 

have started in the 1950’s. Gumbel promotes the 

methodology of using the Generalised Extreme Value 

(GEV) distribution to model componentwise maxima. 

Tawn (1992) applies the methodology to 

oceanographic data, while Walshaw and Anderson 

(2000) use it for wind field modeling. The statistical 
attributes of the approach of the problem of analysing 

extreme values using thresholds are studied in detail 

by Davison and Smith (1990), Walshaw (1994). The 

POT method is rather common today and it is 

considered, under conditions of course, advantageous 

in comparison to other techniques of analysis. Coles 

and Tawn (1996), Coles and Casson (1999) and Goda 
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Abstract 
 

In the present paper extreme wave height, wave period and storm surge events in the marine area of the Varna region are 
analyzed using Extreme Value Theory (EVT) to estimate return levels of the aforementioned variables corresponding to 
selected return periods. Both univariate and multivariate techniques are utilized. The GEV (Generalized Extreme Value) 
distribution is implemented to extrapolate the marine variables to levels more extreme than those observed. Joint probability 

analysis is also conducted. A bivariate extreme value model is used to produce estimates of joint probabilities of extreme 
wave heights and storm surges. For wave period extremes, a conditional distribution on extreme wave height is utilized. Joint  
estimates of wave height, storm surge and wave period are compared to the respective estimates of the univariate analysis, for 
selected return periods.  

 
Keywords: EVT, GEV, univariate extremes, bivariate analysis, conditional distribution. 
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(2000) contribute considerably to the use of the model 

in various applications. Coles (2001) introduces 

shortly the mathematical foundation of the model. 

Galiatsatou and Prinos (2006) and Galiatsatou et al. 

(2008) use the point process model with rainfall and 

storm surge extremes within a stationary context.  

Where the source consists of more than one 

variables (e.g. coastal flooding caused by extreme 
wave heights and water levels), it is necessary to 

consider their joint probability. Joint exceedance 

probability refers to the chance of two or more 

partially related variables occurring simultaneously. 

Joint exceedance combinations of wave heights and 

sea levels with a given chance of occurrence are 

defined in terms of sea conditions in which a given 

wave height is exceeded at the same time as a given 

water level (or its surge component) being exceeded. 

Multivariate Extreme Value Theory (MVE) is used to 

describe the joint distribution of two or more 
variables and appropriate methodology has only been 

developed in recent years. Coles and Tawn (1991, 

1994), Zachary et al. (1998) and Schlather and Tawn 

(2003) give the main aspects of MVE with 

applications to oceanographic and other sort of 

datasets. Athanassoulis et al. (1994), Morton and 

Bowers (1996), De Haan and De Ronde (1998), 

Ferreira and Soares (2002) and Repko et al. (2004) 

describe the joint probability distribution function of 

long-term hydraulic conditions. Galiatsatou (2007) 

compares different pairs of bivariate observations of 

extreme waves and surges with reference to joint 
exceedance probabilities, in order to find the most 

severe sea state caused by the two variables, while 

Galiatsatou and Prinos (2008) implement four 

bivariate models to the data of significant wave height 

and wave period from a field station off the Dutch 

coast and compare them mainly on their ability to 

correctly describe the data and on their behavior when 

extrapolation is of interest. 

In the present paper analysis of extreme events, 

namely wave height, wave period and storm surge in 

the marine area of the Varna region is conducted 
using Extreme Value Theory (EVT) to estimate return 

levels of the aforementioned variables corresponding 

to selected return periods. Both univariate and 

multivariate techniques are presented. In Section 2, 

the datasets available are presented and described. In 

Section 3, univariate extreme analysis is conducted. 

More specifically, the GEV (Generalized Extreme 

Value) distribution is implemented to extrapolate the 

marine variables of wave height, storm surge and 

wave period to levels more extreme than those 

observed. The fitting of the distribution to all 
available datasets is judged and discussed. In Section 

4, joint probability analysis is conducted for the 

studied variables. A bivariate extreme value model is 

used to produce estimates of joint probabilities of 

extreme wave heights and storm surges. Considering 

wave period extremes, a conditional distribution on 

extreme wave height is utilized. Joint estimates of 

wave height, storm surge and wave period are 

compared to the respective estimates of the univariate 

analysis, for selected return periods. In Section 5, the 

main conclusions of the analysis conducted are 

presented.   

 

Datasets 
 

The present work focuses on extreme value 

analysis of the marine climate in the coastal area of 

Varna. Varna coastal region is located in the Western 

Black Sea sector and it is mainly characterized by an 

eastern exposure. The average width of the 

accumulative coast is 63 m and the maximum width 

reaches up to 105 m (Keremedchiev et al., 2008). 

Winds from the NE prevail in the northern and middle 

sections of the shelf zone, while the impact of eastern 
winds increases southward. Usually, southeast winds 

are less significant in terms of storm intensity but are 

still of importance for the northern shelf in particular 

(Valchev et al., 2008). Following the wind patterns 

waves propagate most frequently from E, NE and SE. 

The datasets considered and analysed in the 

present work are annual and monthly maxima of wave 

heights, storm surges and wave periods. Wave heights 

and wave periods are available for a time period of 61 

years (1948-2008), while storm surge data cover a 

period of 80 years (1928-2007). Regarding storm 
surge, it should be noted that the available data are 

obtained from sea level measurements of the sea-level 

gauge in Varna. Main Administration for Geodesy 

and Cartography (now - Agency for Cadaster) 

maintains four sea level gauges along the Bulgarian 

Black sea coast. Sea-level gauge in Varna was put in 

operation in 1928. For this measuring location, there 

is no lack of data during the period of the Second 

World War.  

Due to absence of regular long-term 

measurements of wind and wave conditions in the 

western Black Sea, the analysis of wave climate is 
based on continuous hindcast data series. The global 

sea level pressure reanalysis carried out by the 

NCEP/NCAR (Kalnay et al., 1996) is used in order to 

calculate the historical wind forcing for wave models. 

This is done by means of an atmospheric-ocean 

interaction model (Lavrenov, 1998). Since global 

fields have rather coarse resolution (2.5° spatial and 6 

hours temporal), they are downscaled to the Black Sea 

domain. As a result, the obtained hourly gridded wind 

fields have a resolution of 0.5°.  

Wave conditions are modeled using a coupled 
system of third generation spectral wave models. The 

WAM model (Günther et al., 1992) is run on a regular 

spherical grid covering the entire Black Sea basin at 

0.5° spatial resolution. The deep-water settings are 

applied with source and propagation time steps set to 

10 min and 20 min, respectively. The SWAN Cycle 

III model, version 40.72 (The SWAN Team, 2006) is 

set up for wave simulations in the western shelf zone. 

It is nested to WAM as its output provides conditions 
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in terms of significant wave height, mean wave 

period, and mean direction of wave propagation on a 

number of points along the external boundary. 

Therefore wave height and wave period data from a 

SWAN model grid point in front of the study site at a 

depth of 20 m are used in the present work. More 

specifically, the variables used in the present paper to 

represent wave climate are those of the mean wave 

height (Hm) and the mean wave period (Tm). It should 

be noted that on the basis of measurements there is an 
established linkage between Hm, Hs (significant wave 

height), Hrms (root-mean square wave height) as well 

as between Tm, Tp (peak wave period) and Tz (mean 

zero crossing period), therefore the selected set of 

wave characteristics brings all information needed for 

future work that is not in the focus of the present 

study. To be consistent with the principles of a 

physically-based homogeneity of the data, wave 

maxima and associated maximum wave periods for 

three different directions affecting the coast are 

considered: a) the southeastern, b) the northeastern 
and c) the eastern.  

 

Analysis of Univariate Extremes  
 

The calculation of extreme quantiles is often 

applied to statistical models which use block 

maximum data. The GEV (Generalized Extreme 

Value) distribution is considered as an appropriate 

model for such data. It should be noted that the choice 

of the block size is critical, signifying that the block 

maxima should not violate the assumption of their 

identical distribution, where the model is founded. 

Pragmatic considerations often lead to the adoption of 

blocks of length one year. In the present work the 
GEV distribution function and the block maximum 

model are applied to available annual and monthly 

maxima of the marine variables. As the data sample 

consists of more than 60 years of observations, this 

method is considered to be reliable in terms of 

extrapolation results for return periods up to 100 years 

(used in the present work).  

It is supposed that X1, X2,…Xn is a series of 

independent and identically distributed variables with 

a common distribution function F and that 

Mn=max(X1, X2,…, Xn). If there exist sequences of 
normalising constants an>0 and bn that: 

 

)(→)P( zGz
a

-bM

n

nn   as n→∞              (1) 

 

for all z є [z-, z+], where G is a non degenerate 

function supported in the interval [z-, z+], then G is a 
member of the Generalised Extreme Value (GEV) 

distribution family, with distribution function:   

])}(+{1-exp[=)( 1/-
+
ξ

σ

z-μ
ξzG                             (2) 

where μ, σ >0 and ξ are location, scale and shape 

parameters of the distribution, respectively. The 

special case ξ=0 reduces the GEV to the Gumbel 

distribution function.  

To estimate the parameters of the GEV 

distribution function, a common estimation procedure 

is applied, the Maximum Likelihood Estimation 

(MLE). The likelihood function is given with respond 

to acquired observations, and parameters θ = (µ, σ, ξ): 
 

),f(),L( θθ  ixx                                             (3) 

 

and L (or, for numerical advantage logL) is 

maximized with regard to parameters µ, σ and ξ. 

Method MLE gives unbiased estimates of parameters 

and from all unbiased estimators it has the smallest 

mean square error (van Gelder, 2000). The 

maximization of L(θ, x), with regard to all parameters 

θ, is numerically direct and allows easily the 

numerical calculation of standard errors and 

confidence intervals (Coles et al., 2003). 

The GEV distribution function (Eq. (2)) assumes 
a homogeneous distribution for the extreme 

population data within a year. However, for monthly 

maxima the hypothesis of homogeneity is not 

adequately satisfied, since the effects of seasonality 

are evident. Therefore, when fitting the stationary 

GEV model to monthly wave height and storm surge 

extremes, the fitting is poor particularly at the most 

extreme tails and estimates of the model parameters 

lead to non-physically based extreme distributions 

(e.g. the Fréchet distribution which is lower-

bounded). Therefore, a log-transformation is applied 
to the monthly maxima. The GEV model is fitted to 

the log-transformed sample and return level estimates 

are then back-transformed to the original data scale. 

This transformation seems to reduce the seasonal 

effects in the monthly samples, eliminating the main 

differences between seasons and enhancing the data 

homogeneity within each year. The fitting of the GEV 

distribution is significantly improved, when applying 

the log-transformation, while it is insured that the 

Weibull model (upper-bounded distribution) is a 

suitable distribution for the monthly maxima, as it 

was the case for annual maxima. For the datasets 
available, it is judged that the log-transformation is 

necessary for the monthly wave height and storm 

surge data, while it is not required for wave period 

monthly maxima, because seasonal effects in wave 

period extremes are not pronounced. However, it 

should be noted that in cases where seasonal data are 

available, a time-dependent GEV model should be 

applied. It is avoided in this paper, because it would 

perplex the fitting of the bivariate distribution 

function in Section 4.  

Tables 1(a) and 1(b) present return level 
estimates of annual and monthly wave height 

extremes of southeastern, northeastern and eastern 

direction, resulting from the univariate analysis. The 

monthly data are first log-transformed to fit the GEV 
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distribution function and then back-transformed to 

their original scale. The central column for each 

direction corresponds to the MLE, while the other two 

columns represent the 95% confidence intervals, 

assuming that the maximum likelihood estimator is 

normally distributed.  

Figure 1, representatively shows the fitting of 
the GEV distribution to the annual maxima of 

southeastern direction, by means of four diagnostic 

plots (p-p plot, q-q plot, return level plot and density 

plot). From Figure 1, as well as from the diagnostic 

plots of all three directions, it can be concluded that 

the GEV distribution provides a very good fit to the 

wave height annual extremes. Empirical observations 

(marked with circles in Figure 1) lay very close to the 

diagonal, representing the perfect fit, in both the 

probability (p-p plot) and the quantile (q-q plot) plots. 

All empirical observations lay also within the 95% 

confidence intervals in the return level plot, while in 
the density plot the fitted model density represents the 

histogram quite well. For wave height monthly 

maxima (after the log-transformation), the fitting of 

the stationary GEV distribution is not as good as for 

the annual maxima, as a result of remaining seasonal 

effects, especially for the eastern direction. However, 

it is judged satisfactory for the southeastern and the 

northeastern directions. 

For smaller return periods the eastern direction 

gives higher wave height return level estimates 

compared to the other two directions, while for high 
return periods (e.g. 100 years) the southeastern 

direction wave height estimates are the highest (Table 

1(a)). Indeed the distribution function for eastern 

wave height annual extremes is strongly upper-

bounded. The range of the confidence interval for 

eastern wave height extremes is significantly 

narrower, compared to the other two directions. More 

specifically, the 95% confidence interval range for the 

eastern direction wave height corresponding to a 

return period of 5 years is up to 53% and 34% 

narrower than the one for southeastern and 

northeastern waves, respectively. For a return period 

of 100 years, these percentages increase to about 84% 

and 75%, respectively. For monthly maxima (Table 

1(b)), the eastern direction gives the highest return 

level estimates. The northeastern wave direction 
presents the lowest return level estimates, together 

with the narrowest 95% confidence interval ranges for 

small as well as for large return periods. For a return 

period of 100 years the confidence interval range of 

the northeastern wave height is narrower compared to 

the southeastern and the eastern up to 67% and 63%, 

respectively. Comparing return level ML estimates 

from annual and monthly data, it can be concluded 

that the latest are larger for the southeastern and the 

eastern directions, while the opposite happens for the 

northeastern direction. For the southeastern, 

northeastern and eastern directions, differences in ML 
estimates reach 6%, 3.5% and 18%, respectively. The 

range of the 95% confidence intervals for the 

northeastern direction is reduced to half from fitting 

the GEV to monthly maxima. It should be noted that 

for the eastern direction any comparison is not 

trustworthy, due to the not so good fitting of the GEV 

model to the monthly maxima. 

Tables 2(a) and 2(b) present return level 

estimates of annual and monthly wave period 

extremes for waves of southeastern, northeastern and 

eastern direction, resulting from the univariate 
analysis. The four diagnostic plots (not presented here 

for the sake of brevity) for annual wave period 

extremes show a very good fit of the GEV distribution 

function. It should be noted that the fitting is better for 

annual wave period extremes of southeastern and 

northeastern direction. For wave period monthly 

maxima, the fitting of the stationary GEV distribution 

is judged satisfactory. 

Return level estimates for wave periods of 

Table 1(a). Return level estimates from fitting the GEV distribution to wave height annual maxima  
 

Return 

period 
(years) 

Return level estimates of annual maximum Hm (m) 

Southeastern direction Northeastern direction Eastern direction 

2.5% MLE  97.5% 2.5% MLE  97.5% 2.5% MLE  97.5% 

5 2.39 2.61 2.84 2.36 2.52 2.68 3.27 3.38 3.48 
20 2.85 3.23 3.61 2.70 2.95 3.19 3.51 3.61 3.71 
50 3.04 3.60 4.17 2.82 3.18 3.53 3.60 3.70 3.81 
100 3.12 3.86 4.60 2.88 3.33 3.79 3.64 3.75 3.87 

 

 

 
Table 1(b). Return level estimates from fitting the GEV distribution to wave height monthly maxima  
 

Return 
period 

(years) 

Return level estimates of monthly maximum Hm (m) (log-transformation  is included) 

Southeastern direction Northeastern direction Eastern direction 

2.5% MLE  97.5% 2.5% MLE  97.5% 2.5% MLE  97.5% 

5 2.44 2.66 2.91 2.42 2.54 2.66 3.23 3.48 3.75 
20 2.99 3.39 3.84 2.76 2.93 3.10 3.60 4.01 4.47 
50 3.28 3.81 4.42 2.91 3.11 3.33 3.75 4.26 4.84 
100 3.46 4.09 4.84 3.00 3.22 3.46 3.83 4.41 5.07 

 

 



  P. Galiatsatou et al.  /  Turk. J. Fish. Aquat. Sci. 12: 523-531 (2012) 527 
 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

eastern direction are higher than the respective 

estimates corresponding to southeastern and 

northeastern direction (Table 2(a)). More specifically, 

MLEs for a return period of 100 years are higher for 

the eastern direction up to 10.5% and 30%, compared 

to the estimates of the southeastern and the 

northeastern direction, respectively. The range of the 
95% confidence interval for the northeastern direction 

is narrower from the respective ranges of the 

southeastern and the eastern direction up to 47% and 

33%, respectively (for the studied return periods). For 

monthly maxima (Table 2(b)), the eastern direction 

gives also the highest ML return level estimates. For a 

return period of 100 years, the confidence interval 

range of the southeastern wave period is narrower 

compared to the northeastern and the eastern up to 

51% and 57%, respectively. Comparing ML return 

level estimates from annual and monthly data, it can 
be concluded that the latest are larger for the 

northeastern and the eastern directions, while the 

opposite happens for the southeastern direction. For 

the southeastern, northeastern and eastern directions, 

differences in MLEs reach 5%, 8% and 5%, 

respectively. The range of the 95% confidence 

intervals for the southeastern direction is reduced 

from fitting the GEV to monthly maxima more than 

three times. 

Table 3 presents return level estimates of annual 

and monthly storm surge extremes, resulting from the 

univariate analysis. The sample that is used for 
analysis comprises only of the 61 years (1948-2007), 

for which observations of the wave climate are 

available. It should be noted that when the GEV 

distribution is fitted to the whole sample of storm 

surge data (80 years), the resulting model seems to 

describe the observations very poorly. The resulting 

distribution is a Fréchet one, with no upper-bound, 

which is also physically incorrect. The stationary 

GEV model seems not to be appropriate for the whole 
data set, maybe because of some trend inherent or 

some unusual records in the earliest data.  

From the four diagnostic plots (omitted here for 

the sake of brevity), the GEV distribution seems to 

provide a very good fit for both the annual and the 

monthly (log-transformed) storm surge data. Return 

level estimates, resulting from annual and monthly 

(log-transformed) data seem to be close enough 

(Table 3). MLEs of storm surge return level resulting 

from annual maxima are larger than the resulting 

estimates from monthly maxima up to about 10% (for 
the studied return periods). Confidence interval ranges 

are reduced when monthly maxima are used for the 

fitting, up to about 40% for a return period of 100 

years, hence uncertainty in return level estimates is 

significantly reduced.   

 

Analysis of Multivariate Extremes  

 

Where the source of risk consists of more than 

one variable, it is necessary to consider their 

combined probability. Dependence between surges 

and waves is expected, since both are related to local 
weather conditions (Hawkes et al., 2002). Especially 

at extreme levels strong dependence is likely, when 

meteorological systems which generate extreme 

surges also cause strong onshore winds from a 

direction having a long fetch. Hence, joint probability 

analysis is necessary to assess the combined effect of 

 
Figure 1. Diagnostic plots for GEV fit to the southeastern wave height annual maxima. 
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these variables associated with selected return 

periods. Considering wave period extremes, a 
conditional distribution on extreme wave height is 

used in the present work.    

The basic methodology for creating a bivariate 

distribution function starts with selecting independent 

bivariate observations, according to data availability 

in each particular case and the purpose of the analysis. 

The selection of block maxima (annual or monthly) to 

perform such an analysis is a way of ensuing 

independence in the univariate data and thus 

satisfying the crucial assumption of EVT. But it 

should also be noted that the selection of the block 
maximum model, instead for example to the POT, 

was forced in the present study due to the conducted 

bivariate analysis. The non-availability of sea level 

data during significant storms, for which wave 

climate data were available, was an obstacle to using 

the more detailed POT model.  

After defining the extreme bivariate 

observations, dependence between the variables of 

wave height and storm surge is calculated. Based on 

the dependence function of the variables, appropriate 

bivariate models should be selected to simulate their 

extreme values. Wave heights and storm surges are 
not independent variables, but they are certainly 

characterized by some form and some degree of 

dependence. The complete pair of measures of 

extremal dependence χ and , introduced by Coles et 

al. (1999), is informative for both asymptotically 

independent and dependent variables. When used for 

bivariate random samples with identical marginal 
distributions, both measures provide an estimate of 

the probability of one variable (e.g. wave heights) 

being extreme, provided that the other one (e.g. surge 

levels) is extreme. The complete pair of (χ,  ) can 

give an impression of extremal dependence (Coles, 

2001). Estimating the pair of dependence measures (χ, 

 ) for all different pairs of wave height and storm 

surge data, it can be observed that there is not 

significant evidence that the two variables are not 

consistent with asymptotic dependence at extreme 

levels.  

Modelling approaches for multivariate extremes 

are analogous to block maximum, threshold and point 

process results, derived for univariate extremes. 

Provided that the bivariate pairs of directional wave 

heights and storm surges are consistent with 

asymptotic dependence, their dependence function 

can be well represented by the dependence function of 
a Bivariate Extreme Value distribution (BVE). The 

most widely used parametric model, which is utilized 

to simulate the joint distribution of wave height and 

storm surge extreme events in the present work, is the 

BVE exchangeable logistic model with distribution 

Table 2(a). Return level estimates from fitting the GEV distribution to wave period annual maxima 
 

Return 
period 

(years) 

Return level estimates of annual maximum T (sec) 

Southeastern direction Northeastern direction Eastern direction 

2.5% MLE  97.5% 2.5% MLE  97.5% 2.5% MLE  97.5% 

5 5.94 6.14 6.34 5.24 5.40 5.57 6.68 6.86 7.05 
20 6.33 6.70 7.07 5.59 5.83 6.06 7.09 7.41 7.74 
50 6.45 7.03 7.60 5.72 6.04 6.37 7.29 7.76 8.24 

100 6.49 7.26 8.03 5.77 6.18 6.59 7.41 8.02 8.64 

 

 
 
Table 2(b). Return level estimates from fitting the GEV distribution to wave period monthly maxima 
 

Return 
period 
(years) 

Return level estimates of monthly maximum T (sec) 

Southeastern direction Northeastern direction Eastern direction 

2.5% MLE  97.5% 2.5% MLE  97.5% 2.5% MLE  97.5% 

5 6.05 6.18 6.31 5.26 5.46 5.67 6.82 7.05 7.28 
20 6.40 6.58 6.76 5.73 6.06 6.38 7.37 7.74 8.11 
50 6.58 6.79 7.00 5.99 6.40 6.82 7.67 8.14 8.62 
100 6.68 6.92 7.16 6.16 6.65 7.14 7.87 8.43 8.99 

 
 

 
Table 3. Return level estimates from fitting the GEV distribution to storm surge annual and monthly maxima 
 

Return period 
(years) 

Return level estimates of maximum SS (m) 

Annual maxima Monthly maxima ((log-transformation  is included) 

2.5% MLE  97.5% 2.5% MLE  97.5% 

5 0.46 0.51 0.55 0.45 0.49 0.53 
20 0.57 0.65 0.73 0.55 0.61 0.68 
50 0.60 0.73 0.85 0.59 0.67 0.76 

100 0.62 0.78 0.95 0.62 0.71 0.82 
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function (Tawn, 1988):  
 

])(exp[),(
1/

2

1/

121

rrr
zzxxG  -                         (4) 

 

with dependence parameter r (0< r ≤1). In Eq. (4) Z1 

and Z2 are the transformed GEV margins of the 

variables X1 (waves) and X2 (surges). Complete 

dependence is achieved in the limit as r approaches 

zero, while independence is obtained when r=1.  

Before fitting the bivariate logistic distribution 
function to pairs of wave height of one of the three 

selected directions (east, northeast, southeast) and of 

storm surge, the univariate GEV distribution is fitted 

to annual and monthly maxima of all variables 

(Section 3). MLE is applied to estimate the 

parameters of each such model (  ˆ,ˆ,ˆ ). Assuming 

the margins of the logistic model are GEV distributed, 

the variables X1 and X2 are transformed:  
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Replacing Eq. (5) within Eq. (4) can yield 

selected joint exceedance probabilities of wave height 

and storm surge. In the present study, the bivariate 

logistic distribution function with GEV margins is 

utilized to calculate the contour levels of directional 

wave height and storm surge, corresponding to return 

periods of 5, 20, 50 and 100 years.  

In view of the dependence structure between 

wave heights and wave periods, marginal analysis is 

in itself insufficient to come to an accurate description 
of the long-term wave climate. Hence in order to 

model wave period in a more reliable way, a 

conditional distribution of the variable on the wave 

height is utilized. Indeed the GEV distribution (Eq. 

(2)) is used for the wave period with the three 

parameters μ, σ and ξ. Annual and monthly maxima of 

southeastern, northeasten and eastern direction are 

analysed conditional on maxima wave heights (annual 

or monthly, respectively) of similar direction. It has 

been noted that log-transformed wave height and 

wave period data are highly correlated and therefore 
the GEV distribution is fitted to the log-transformed 

wave period data of the three directions. The location 

and scale parameters of the distribution are modelled 

as linear functions of the log-transformed wave 
height:  

 

Hln+=
10
μμμ                                        (6a)  

Hln+=
10
σσσ                                         (6b) 

 

where μ0, μ1, σ0 and σ1 are estimated using MLE.  

Table 4 presents return level estimates of annual 

maximum wave heights and conditional wave periods 

of the three selected directions (SE, NE and E) and 

“concomitant” estimates of annual maximum storm 

surge, corresponding to return periods of 5, 20, 50 and 

100 years. The combinations presented are selected 

out of an infinite number of different combinations of 

the two variables (wave height and storm surge), in 

the curved part of the contour plots, in a way to 

represent most properly the dependence structure of 
the data. 

Comparing ML return level estimates of the 

univariate analysis of annual maxima of wave height 

and storm surge (Table 1(a), Table 3) with the 

estimates from the bivariate model (Table 4), it is 

obvious that in the latter all return levels are 

calculated significantly lower. More specifically for 

the southeastern wave direction, wave height is 

reduced up to almost 7% and storm surge up to 43%. 

For the northeastern direction, the respective 

proportions rise to 6% and about 51%, respectively. 

For the eastern direction, wave height is slightly 
reduced up to 3.5%, while the storm surge is 

estimated lower up to 45%. For wave period, 

differences between the estimates of the univariate 

stationary model (Table 2(a)) and the conditional one 

(Table 4) are not significant. Larger divergences are 

observed for the southeastern direction, where for a 

return period of 100 years the return level estimate 

resulting from the conditional model is higher than 

the one of the former model up to almost 4%.    

As analysed in Section 3, due to the presence of 

strong seasonal effects in the monthly data both wave 
height and storm surge variables are first log-

transformed to perform the fitting of the bivariate 

distribution function and at the end the contours are 

back-transformed to the original scale of the data. 

This transformation reduces the effects of seasonality 

on extremal analysis. Table 5 presents return level 

estimates of monthly maximum wave height and 

conditional wave period of the three selected 

Table 4. Concomitant return level estimates of annual maximum wave heights, conditional wave periods and annual 
maximum storm surge 
 

Return 
period 
(years) 

Concomitant estimates of annual maximum Hm , T and Storm surge  

Southeastern direction Northeastern direction Eastern direction 

Hm (m) SS (m) T(s) Hm (m) SS (m) T(s) Hm (m) SS (m) T(s) 

5 2.45 0.29 6.05 2.37 0.26 5.31 3.26 0.28 6.86 
20 3.06 0.39 6.80 2.80 0.32 5.80 3.51 0.40 7.47 
50 3.36 0.50 7.21 3.02 0.37 6.01 3.59 0.53 7.84 

100 3.62 0.58 7.53 3.13 0.43 6.12 3.64 0.62 8.13 
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directions (SE, NE and E) and concomitant estimates 

of monthly maximum storm surge for return periods 

of 5, 20, 50 and 100 years. The combinations 

presented are selected out of an infinite number of 

different combinations of the two variables (wave 

height and storm surge), in the curved part of the 
contour plots, in a way to represent most properly the 

dependence structure of the data. 

Comparing ML return level estimates of the 

univariate analysis of monthly maxima of wave height 

and storm surge (Table 1(b), Table 3) with the 

estimates from the bivariate model (Table 5), it is 

again obvious that in the latter all return levels are 

reduced. More specifically for the southeastern wave 

direction, wave height is reduced up to almost 16% 

and storm surge up to 49%. For the northeastern 

direction, the respective proportions rise to 10% and 
about 47%, respectively. For the eastern direction, 

wave height is reduced up to almost 11%, while the 

storm surge is estimated lower up to 49%. For wave 

period, differences between the estimates of the 

univariate stationary model (Table 2(b)) and the 

conditional one (Table 5) are not very large. For the 

southeastern wave direction, wave periods are 

reduced up to 6% with the conditional model, for 

small return periods. For northeastern and eastern 

wave directions, wave periods are reduced up to 8% 

and 9%, respectively for large return periods.  

 

Conclusions  
 

In the present paper extreme wave height, wave 

period and storm surge events in the marine area of 

the Varna region were analyzed using univariate and 

multivariate Extreme Value Theory (EVT) to estimate 

return levels of the aforementioned variables 

corresponding to selected return periods. The GEV 

(Generalized Extreme Value) distribution was 
implemented to extrapolate the marine variables to 

levels more extreme than those observed. Joint 

probability analysis was also conducted for the 

studied variables. A bivariate extreme value model 

was used to produce estimates of joint probabilities of 

extreme wave heights and storm surges. Considering 

wave period extremes, a conditional distribution on 

extreme wave height was utilized. The main 

conclusions of the present work are summarized 

below: 

 The GEV distribution function seems to 

provide a very good fit to directional wave height, 

storm surge and directional wave period annual 

maxima. Diagnostic plots (p-p plots, q-q plots, return 

level plots and density plots) prove that the GEV is an 

appropriate model for such extremes.  

 The log-transformation of the wave height 
and storm surge monthly data ensures that the 

Weibull model is a suitable distribution for the 

monthly maxima. The log-transformation of monthly 

maxima seems to reduce the effects of seasonality on 

extremal analysis, enhancing the accuracy of extreme 

value predictions. For wave period, the log-

transformation does not have significant effects on 

return level estimates, because seasonal effects are not 

so prominent in this signal’s extremes. However, it 

should be noted that in cases where seasonal data are 

available, a time-dependent GEV model should be 
applied. 

 When the log-transformation is applied to 

monthly maxima of wave height and storm surge and 

the fitting of the GEV distribution to the transformed 

data is satisfactory, the range of the return level 

confidence interval is significantly reduced, compared 

to the case of annual maxima.  

 The bivariate logistic distribution function 

is selected as an appropriate model for joint extreme 

directional wave height and storm surge events, 

because these extremes are characterized by 

asymptotic dependence. For wave period, a 
conditional GEV distribution of the variable on the 

wave height is utilized.  

 Concomitant estimates of wave height and 

storm surge extremes are significantly reduced 

compared to the univariate estimates corresponding to 

similar return periods. For annual maxima, wave 

period return level estimates do not show significant 

divergencies between the univariate stationary model 

and the conditional distribution function, while when 

monthly maxima are utilized some differences are 

observed mainly at the northeastern and the eastern 
direction.  
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Table 5. Concomitant return level estimates of monthly maximum wave heights, conditional wave periods and monthly 
maximum storm surge 
 

Return 
period 
(years) 

Concomitant estimates of monthly maximum Hm, T and Storm surge  

Southeastern direction Northeastern direction Eastern direction 

Hm (m) SS (m) T(s) Hm (m) SS (m) T(s) Hm (m) SS (m) T(s) 

5 2.34 0.25 6.55 2.29 0.26 5.32 3.16 0.25 7.08 
20 2.86 0.41 6.94 2.72 0.42 5.78 3.57 0.42 7.44 
50 3.35 0.50 7.12 2.95 0.47 6.01 3.92 0.48 7.60 

100 3.65 0.58 7.21 3.07 0.52 6.13 4.11 0.54 7.68 
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