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Diet Composition and Digestive Enzymes Activity in Carnivorous Fishes 

Inhabiting Mudflats of Indian Sundarban Estuaries 

Introduction 
 

Studies of resource requirements by various 

species have been used in attempts to understand 

factors controlling the distribution and abundance of 

organisms (Ross, 1986).  In addition, studies on food 

habits of organisms utilizing each habitat help to 

illustrate the role of the latter in the ecology of several 

organisms. Therefore, food resources have received 

by far the most attention (Simberloff and Dayan, 

1991); many studies on feeding ecology having been 

conducted for different fish communities (Pausey et 

al., 1995; Piet et al., 1999; Garrison and Link, 2000).  

Tidal mudflats occupy a significant component 

of the total estuarine habitat available to fishes and 

play important roles as nursery and foraging grounds 

(Edgar and Shaw, 1995; Horinouchi and Sano, 2000). 

Few studies on the feeding habits of each species 

within such assemblages have been conducted, 

although most have been made in temperate regions 

(Edgar and Shaw, 1995; Horinouchi et al., 1996). 

The Sundarban (India) mudflats (Banerjee, 

1998; Bose 2004) are found at the estuary and on the 

deltaic islands where low velocity of river and tidal 

current occurs. The flats are exposed in low tides and 

submerged in high tides, thus being changed 

morphologically even in one tidal cycle. The interior 

parts of the mudflats are magnificent home of 

luxuriant mangroves. The Sundarban mudflats control 

the food chain in the estuarine ecosystem. 

The biodiversity associated with a diverse and 

dynamic environment makes the study of feeding 

habits of fishes from the mudflats of Sundarbans 

unique, since the environmental changes require 

continuous adjustments at all levels of the biological 

organization (Val and Almeida-Val, 1995; López-

Vásquez et al., 2009). These adjustments undoubtedly 

affect how fishes acquire their food as well as how 

they metabolize them. Most vertebrates, including 

fishes, possess digestive enzymes that allow them to 

digest the food that they consume, but variation exists 

among species in the activity of individual enzymes 

(Chakrabarti et al., 1995; Kuźmina, 1996a; Alarcón et 

al., 1998). Digestive enzymes, however, may be a 

complementary tool useful for determining which 

dietary components are most effectively metabolized 
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Abstract 

 

Intertidal mudflats occupy a significant component of the total estuarine habitat available to fishes as nursery and 

foraging grounds. In this study, fifteen sites were randomly explored along three estuarine rivers in Indian Sundarbans and 27 

fish species, were recorded. Upon analysis of prey preferences, they were categorized into different trophic types. A 

comparative study of the digestive physiology of 10 carnivorous species as functional analogues was carried out in order to 

find out relationship between digestive enzyme activity and trophic niche segregation among them. Rarefaction curves for 

stomach content analysis indicated diverse nature of prey preferences among different species. A dendrogram based on prey 

diversity was constructed through cluster analysis. Another dendrogram was constructed based on enzymes (i.e. α-amylase, 

invertase, cellulose, alkaline protease and pepsin) which were measured from liver, stomach and intestine of ten carnivorous 

species. A comparison of the two dendrograms did not reflect any positive relationship between prey preferences and 

digestive enzymes. It was, therefore, concluded that enzyme patterns were more affected by phylogeny rather than 

adaptability. No clear predominance among digestive enzymes was observed in relation to food, suggesting that the organic 

matter of animal origin was utilized non-selectively by these fishes since the quality and variety of available food were 

subjected to change and over time in such a dynamic environment.  

 

Keywords: Stomach content, teleosts, amylolytic enzymes, proteolytic enzymes, dendrogram. 
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(Brêthes et al., 1994). By understanding the digestion 

and assimilation of specific dietary components, the 

type of prey that the animals prefer and those that 

they are best equipped to digest could be identified. In 

fact, carnivorous fish influence and are influenced by 

the behavior and abundance of their fish and 

invertebrate prey species (Hobson and Chess, 1986; 

Laprise and Blaber, 1992; Sackley and Kaufman, 

1996; Silvano, 2001). 

The present study investigates the digestive 

physiology of ten species of fish from the inundated 

mudflat habitats of Sundarbans with similar 

nutritional habits (categorized as carnivores). This 

study is aimed at (1) determining dietary preferences 

for each of the fish species, using stomach content 

analysis, and (2) quantifying the activities of a range 

of digestive enzymes in each fish species to determine 

the utilization of various food sources available to the 

fishes. 

 

Materials and Methods 
 

Study Site and Fish Samples Collection 

 

Fifteen study sites were selected randomly along 

the adjacent mudflats of Matla river, Bidya river and 

Boro Herobhanga rivulet in Sundarban (22°10′N, 

88°40′E) on the Indian territory (Figure 1). Adult 

fishes belonging to 27 species under 9 orders were 

collected during high tide with gill nets of 20 m 

length with 1 cm spacing between adjacent knots and 

during low tide by hand net. The specimens were 

retrieved from the net, identified (Day, 1958; Talwar 

and Jhingran, 1991) and measured for total length (LT, 

cm) and weighed for total mass (M, g) (Table 1). 

 

Stomach Content Verification 
 

The fishes were anaesthetized with MS222 (15 

specimens per each species) and each stomach was 

visually assessed for fullness (1=empty, 2=25%, 

3=50%, 4=75%, 5=100% full), and those with a score 

of 3 to 5 were dissected. The contents of the stomach 

were collected separately in 70% ethanol and 

observed under microscope. Prey items were 

identified to the lowest possible taxon and each 

individual item was counted. 

 

Categorization of Carnivorous Fishes and 

Stomach Content Analysis 
 

Amongst 27 species, 10 teleosts were 

categorized into carnivorous habit, since more than 

50% of the stomach contents were animal prey items 

(Figure 2). The carnivorous teleosts were: 

Ophisternon bengalense McClelland 1844, 

Uroconger lepturus Richardson 1845, Congresox 

telabon Cuvier 1829, Terapon jarbua Forsskål 1775, 

Pisodonophis boro Hamilton 1822, Trichiurus 

gangeticus Gupta 1966, Muraenesox bagio Hamilton 

1822, Scatophagus argus Linnaeus 1766, 

Pseudapocryptes elongates Cuvier 1816 and Butis 

butis Hamilton 1822 (two orders and six families). To 

measure the trophic diversity, rarefaction curves 

(Hurlbert, 1971) were used for the prey populations 

predated by 10 carnivorous fishes. The total number 

of food items consumed by each stage gives the 

richness of the prey consumed. Rarefaction is given 

by the calculation of E(S) for a sequence of n,  
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Figure 1. Location of study area in Sundarbans. India. Inset: Location of sampling sites in the mudflats of Matla river, Bidya 

river and Boro Herobhanga rivulet. 
 



  A. Chaudhuri et al.  /  Turk. J. Fish. Aquat. Sci. 12: 265-275 (2012) 267 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where E(S) = expected richness in the rarefacted 

sample with a given n, n = standard size of the 

sample, N = total number of quotations of each kind 

of food, and Ni = number of meals with the i 
th

 food 

item. The computation was performed using 

Estimates software. 

Digestive Enzyme Analysis 

 

After collection of the stomach content, liver, 

stomach and intestine of ten carnivorous fishes 

previously anaesthetized, were dissected out, 

weighed, kept in liquid nitrogen during transportation 

to the laboratory and frozen at -70°C until assay of the 

enzymes.  

Table 1. Fish species analyzed with mean±SE body mass (M) and total length (LT) (n = 15) 

 
 Scientific name Order Family M (g) LT (mm) 

1 Ophisternon bengalense (McClelland 1844) Synbranchiformes Synbranchidae 2500.0± 12.55 970.00±7.35 
2 Uroconger lepturus (Richardson 1845) Anguilliformes Congridae 69.0±5.71 360.0±5.50 

3 Congresox telabon (Cuvier 1829) Anguilliformes Muraenesocidae 208.0±7.23 570.40±2.08 

4 Muraenesox bagio (Hamilton 1822) Anguilliformes Muraenesocidae 2805.0± 14.05 600.70±3.09 
5 Pisodonophis boro (Hamilton 1822) Anguilliformes Muraenesocidae 55.5±3.17 380.50±2.56 

6 Strongylura strongylura (van Hasselt 1823) Beloniformes Belonidae 65.9±7.44 320.50±0.50 

7 Hyporhamphus limbatus (Valenciennes 1847) Beloniformes Hemiramphidae 70.8±9.20 100.90±0.72 
8 Gudusia chapra (Hamilton 1822) Clupeiformes Clupeidae 14.2±2.62 100.10±1.86 

9 Setipinna taty (Valenciennes 1848) Clupeiformes Engraulidae 13.3±2.07 140.90±3.52 

10 Bregmaceros mcclellandi (Thompson 1840) Gadiformes Bregmacerotidae 2.1±0.05 80.05±0.05 
11 Liza parsia (Hamilton 1822) Mugiliformes  Mugilidae 12.5±3.33 150.50±0.55 

12 Uropterygius marmoratus (Lacepède 1803) Muraenidae Anguilliformes 677.6±10.20 470.70±5.10 
13 Butis butis (Hamilton 1822) Perciformes Eleotridae 17.3±3.16 130.20±1.10 

14 Boleophthalmus boddarti (Pallas 1770) Perciformes Gobiidae 11.5±2.07 110.76±2.22 

15 Odontamblyopus rubicundus (Hamilton 1822) Perciformes Gobiidae 5.6±1.11 120.90±2.78 
16 Periophthalmus novemradiatus (Hamilton 1822) Perciformes Gobiidae 1.6±0.67 50.51±0.17 

17 Pseudapocryptes elongates (Cuvier 1816) Perciformes Gobiidae 11.3±2.85 120.61±2.78 

18 Trypauchen vagina (Bloch & Schneider 1801) Perciformes Gobiidae 8.6±1.74 140.80±0.50 
19 Taenioides anguillaris (Linnaeus 1758) Perciformes Gobiidae 9.4±2.95 170.01±1.08 

20 Scatophagus argus (Linnaeus 1766) Perciformes Scatophagidae 29.0±2.58 150.60±3.93 

21 Sillaginopsis panijus (Hamilton 1822) Perciformes Sillaginidae 126.5±8.15 220.56±2.50 
22 Terapon jarbua (Forsskål 1775) Perciformes Terapontidae 26.7±2.25 90.40±0.65 

23 Toxotes chatareus (Hamilton 1822) Perciformes Toxotidae 135.1±6.47 190.79±2.33 

24 Trichiurus gangeticus (Gupta 1966) Perciformes Trichiuridae 18.0±3.19 420.75±4.25 
25 Cynoglossus lingua (Hamilton 1822) Pleuronectiformes Cynoglossidae 12.5±2.81 280.42±2.15 

26 Mystus gulio (Hamilton 1822) Siluriformes Bagridae 66.4±4.12 200.07±3.12 

27 Cephalocassis jatia (Hamilton 1822) Siluriformes Ariidae 71.3±2.58 220.50±2.58 

 

 

 

 
 

Figure 2. Percentage abundance of seventeen prey items among stomachs of twenty seven teleost species in intertidal 

mudflats of Sundarbans. 
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The preparation of tissue extracts was carried 

out at 4°C. The digestive organs of each fish (liver, 

stomach and intestine) were thoroughly washed with 

chilled glass-distilled water and homogenized in 0.02 

M phosphate buffer pH 7.0 (1:5 w/v) for 3 min at 

5500 G, 4°C. Tissue homogenates were centrifuged in 

a Hermule Z323K refrigerated centrifuge at 10,000 G 

for 25 min at 4°C. The supernatant was separated and 

preserved for enzyme assays. The soluble protein 

content of each extract was determined against bovine 

serum albumin as reference (Lowry et al., 1951). Five 

digestive enzymes were assayed at the optimum 

temperature in all the samples. 

α-Amylase activity was assayed as Bernfeld 

(1955), using starch (1%) [Sigma, U.S.A.] as 

substrate, phosphate (Na2HPO4 + NaH2PO4) buffer 

(pH 6.9) and maltose as standard. One unity (U) of 

amylase was defined as the amount of enzyme needed 

to hydrolyze 1 mg of starch per min at 37°C. The 

amylase activity was expressed per mg of protein. 

Cellulase activity was determined following Kesler 

and Tulou (1980) using carboxy-methyl-cellulose 

(1%) [Sigma, U.S.A.] as substrate, phosphate buffer 

(pH 5.5) and glucose as standard. A unit of cellulase 

was defined as the amount of enzyme needed to 

hydrolyze 1 mg 1% CMC per min at 37°C. Invertase 

activity was estimated following Pal et al. (1980) 

using (2.5%) sucrose [Sigma, U.S.A.] as substrate, 

phosphate buffer (pH 5.5) and glucose as a standard 

(Bacon, 1955). A unit of invertase was defined as the 

amount of the enzyme needed to hydrolyze 1 mg of 

substrate per min at 37°C. Alkaline protease was 

measured following Ichishima (1970) using (1%) 

bovine serum albumin [Sigma, U.S.A] as substrate 

(pH 10.0). One unit of alkaline protease activity was 

calculated as the amount of enzyme needed to 

hydrolyze 1 mg BSA per min at 37°C. Pepsin was 

measured following Ragyanszky (1980) using casein 

(1%) [Sigma, U.S.A.] as substrate at pH 1.5 using 60 

mM HCL. For alkaline proteases as well as for 

pepsin, tyrosine was used as standard. Enzyme assays 

were performed with a Shimadzu UV-1700 

PharmaSpec, UV/visible spectrophotometer. Activity 

of all enzymes was expressed in units per mg of 

protein (U mg
-1

 protein). 

 

Statistical Analysis 

 

Multivariate Analysis of Variance (MANOVA) 

(Zar, 1999) was applied using SPSS 7.0. The mean 

value of fifteen repetitions of each enzyme from each 

tissue evaluated for each fish species was used to 

interpret the variations among the species. The 

homogeneity between mean values of the different 

fish species was tested using Post Hoc Duncan test; 

values were considered statistically different at the 

P<0·05 level. Results are reported as means ± SE. 

Dendograms were constructed for hierarchical cluster 

analysis among the carnivorous teleosts for stomach 

contents as well as for digestive enzymes using Ward 

method and Euclidean distance (SPSS 7.5).  

 

Results 
 

Stomach Contents Analysis 

 

Seventeen different prey categories were 

recorded in the stomach of 27 species apart from 

some unidentified material and faecal pellets. About 

eight prey species were found per stomach as majority 

of the individuals had a more diverse diet (>5 prey 

types consumed).  

As mentioned earlier, ten species were found to 

be carnivorous based on prevalence of animal matter 

(>50%) in their stomach content. The trophic 

diversity of these ten carnivorous fish species was 

reflected by the rarefaction curves for stomach 

content analysis, (Figure 3) which indicated 

differences in prey diversity. Stomach content was 

most varied (14 prey species) in U. lepturus and Pi. 

boro and least diverse (9 prey species) in M. bagio 

and Ps. elongatus. 

Among all prey items, decapods crabs, decapods 

shrimps and juvenile fishes were found to be common 

and consisting the major portions of the stomachs 

irrespective of species. Gastropods were found 

frequently in the stomachs of M. bagio, Te. jarbua 

and a little in case of Pi. boro, U. lepturus and O. 

bengalense. The stomach contents of S. argus, U. 

lepturus and O. bengalense were also contributed by 

decapods crabs prominently along with the other food 

items. Ophidian group was only found in the 

stomachs of O. bengalense (Table 2). 

Dendogram of 10 carnivorous fish species on the 

basis of their stomach contents showed a clustering 

between B. butis, Ps. elongatus and M. bagio, on the 

other hand C. telabon, Tr. gangeticus, Pi. boro and O. 

bengalense formed another cluster if 0.1 Square 

Euclidean distance was considered (Figure 4).  

 

Digestive Enzymes 

 

Negligible α-amylase activity was recorded from 

the digestive organs of U. lepturus, Te. jarbua, M. 

bagio, O. bengalense, C. telabon, Pi. boro and Tr. 

gangeticus. Alfa-amylase activity was significantly 

high (P<0.05, df = 14) in Ps. elongatus (Figure 5a). 

Most of the fish presented moderate cellulase activity 

in the gut and higher enzyme activity in liver. In Te. 

jarbua, the liver showed maximum cellulase activity 

compared to other fishes (Figure 5b). B. butis 

exhibited maximum (P<0.05, df = 14) invertase 

activity in gut. U. lepturus exhibits lowest invertase 

activity irrespective of digestive organs (Figure 5c). 

Alkaline protease activity was at maximum levels in 

O. bengalense and Te. jarbua. In B. butis (all three 

tissues) minimum activity of alkaline protease was 

found (Figure 5d). Maximum and minimum pepsin 

activity was recorded in the stomach of Pi. boro and 

B. butis respectively (Figure 5e) (Table 3).  
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Dendogram of 10 carnivorous fish species on the 

basis of their digestive enzymes showed a single 

clustering between C. telabon, M. bagio, Tr. 

gangeticus, S. argus, Te. jarbua, U. lepturus, B. butis, 

and O. bengalense when 0.01 Square Euclidean 

distance was considered (Figure 4).  

 

Discussion 
 

The dietary preference of ten carnivorous 

species of fish was investigated to determine which 

dietary components were most likely being 

assimilated. Although fish did not always occupy 

separate ecological niche with regard to their food, 

there might be some kind of preferences or affinity 

based on which the food habit of fishes could be 

designated. Prey selectivity of predator fishes was 

controlled by the apparent size, number and type of 

prey item consumed (Luo et al., 1996; Reiss et al., 

2002).  In this study, U. lepturus and Pi. boro 

exhibited more diverse prey preference in comparison 

to others. The selectivity, however, might change with 

the prey concentration, distribution and abundance in 

predictable or food-rich environments (Munk, 1997). 

Digestive enzyme activities had been an 

effective tool for identifying particular components of 

 
Figure 3. Rarefaction curve of ten carnivorous fishes showing the abundance of prey items inside their stomachs. 
 

 

 

Table 2.Percentage abundance of 17 prey items among stomachs of selected ten carnivorous teleost species of inundated 

mudflats of Indian Sundarbans 

 
 

Species 
Different prey items 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 O. bengalense                        

2 U. lepturus                      

3 C. telabon                         

4 Te. jarbua                       

5 Pi. boro                      

6 Tr. gangeticus                         

7 M. bagio                      

8 B. butis                     

9 S. argus                    

10 Ps. elongatus                     

 0% 0.1 - 10% 10.1 - 20% 20.1 - 30% 
Note: 1. Phytoplankton, 2. Copepod zooplankton, 3. Cladoceran zooplankton, 4. Macroalgae, 5. Cnidarians, 6. Amphipods, 7. Polychaete, 8. 

Oligochaetes, 9. Aquatic insects, 10. Decapod crabs, 11. Decapod shrimps, 12. Isopods, 13. Gastropods, 14. Bivalves, 15. Teleosts, 16. 

Ophidia, 17. Detritus 
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an animal’s diet (van der Veer, 1986; Kanou et al., 

2000). Digestive processes in fish aren’t well known 

as in mammals, although the data obtained in fish so 

far show that the digestive enzymes studied are 

qualitatively similar to those observed in other 

vertebrates. Fish may adapt their metabolic functions 

to the dietary substrates, through a regulation in 

enzyme secretion, in order to improve the utilization 

of feed ingredients (Caruso et al., 2009). A 

comparative study of the activity of digestive 

proteolytic enzymes and amylase can reveal the 

capacity of different species to use protein and 

carbohydrates (Hidalgo et al., 1999). Chan et al. 

(2004) mentioned that the activity of α-amylase 

follows a pattern influenced more by phylogeny than 

by diet in prickleback fishes. On contrary, Fernandez 

et al. (2001) pointed out that the adaptations of the 

digestive system of different species exhibit closer 

correlation with their diet rather than on their 

taxonomic category. This view was also confirmed by 

the results of Kuźmina (1996) who indicated that 

changes in digestive enzyme activity could be 

affected by feeding behaviour and biochemical 

composition of food. 

Most reports on α-amylase in fishes conclude 

that herbivorous or omnivorous fishes have higher α-

amylase activities than carnivorous fishes (Kapoor et 

al., 1975; Sabapathy and Teo, 1993; Hidalgo et al., 

1999; Fernandez et al., 2001; Chan et al., 2004; 

Drewe et al., 2004; Horn et al., 2006). In the present 

study, significantly low levels of α-amylase, cellulose 

and invertase activities were detected in the digestive 

tract in U. lepturus (87.7% animal matter in stomach) 

and Pi. boro (83.4% animal matter in stomach) 

compared to the other carnivorous fishes studied, 

indicating that these fishes had a lesser ability to 

utilize carbohydrates. Munilla-Morán and Saborido-

Rey (1996) noted that digestion of carbohydrates was 

at low rates in three carnivorous fish species, and α-

amylase was not considered fundamental in their 

digestive processes. On the other hand all the three 

carbohydrases studied showed significantly higher 

activity in S. argus that had comparatively higher 

plant matter in stomach (19.3%) and in Ps. elongatus 

(14.4% of both plant matter and detritus in stomach) 

and B. butis (6.9% of plant matter and 16.8% of 

detritus in stomach). 

It had earlier been reported (López-Vásquez et 

al., 2009) that carbohydrases and proteolytic activities 

were higher in the detritivores compared to the 

omnivorous and carnivorous fishes.This view is 

supportive of the enzyme pattern obtained in Ps. 

elongatus from the current study. In general, 

detritivorous fishes consume large amounts of coarse 

vegetable detritus in the form of fine amorphous 

material of undetermined origin. Much of the fine 

particulate organic matter taken up by detritivorous 

fishes is derived from algae, even in systems in which 

aquatic macrophytes dominate aquatic primary 

production (Winemiller and Jepsen, 1998). Higher 

digestive enzyme activity in detritivorous fishes is an 

adaptation to extract high nutrient levels from 

 

 
Figure 4. Dendogram of ten carnivorous fishes on the basis of their stomach content (a) and digestive enzymes (b). 

 

a 

b 
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detritus, which represents a poor nutrient source. This 

adaptation may be species specific and be used 

extensively by fishes to survive specific 

environmental conditions. Contrastingly, in spite of 

having higher proportion of detritus in the stomach, B. 

butis showed the lowest activity of proteolytic 

enzymes (alkaline proteases and pepsin) in this study. 

In fishes, protein is digested initially in the 

stomach by pepsin and acid, and then further 

degraded into smaller peptides and free amino acids 

in the intestine by the combined actions of various 

alkaline proteases (Hirji and Courtney, 1982). It has 

been reported that carnivorous fish species possess 

higher protease activities than herbivorous and 

omnivorous species (Kapoor et al., 1975; Sabapathy 

and Teo, 1993). In the present study, highest activity 

of pepsin was observed in Pi. boro stomach (animal 

prey in stomach: 87.4%) followed by O. bengalense 

(liver and stomach) (animal prey in stomach: 94.9%). 

Pepsin is probably responsible for the earliest stage of 

protein digestion in breaking down large-chain 

polypeptides chains in the stomach with the help of 

secreted hydrochloric acid (Tengjaroenkul et al., 

2000; Natalia et al., 2004). Species such as those of 

Tilapia with thin stomach walls require a highly 

acidic medium to enable biochemical digestion of 

protein compared with those with muscular stomachs 

such as African catfish, which rely more on the 

mechanical breakdown of food or chyme and secrete 

less pepsin (Maier and Tullis, 1984; Uys and Hecht, 

1987). The activity of alkaline protease was 

maximum in O. bengalense and T. jarbua followed by 

Pi. boro and S. argus. The alkaline protease activity 

was significantly higher in T. jarbua though it 

   

  
Figure 5. α-amylase (a), cellulase (b), invertase (c), alkaline protease (d) and pepsin (e) activity in seven carnivorous fishes 

of inundated estuarine mudflats of Sundarbans. 
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Table 3. Digestive enzymes activities in teleost fish speices from the mudflats of Indian Sundarbans  

 
 α-Amylase Cellulase Invertase Alkaline Protease Pepsin 

 L S I L S I L S I L S I L S I 

U. lepturus 0.0004a 
± 

6.3E-06 

0.0005a 
± 

3.8E-05 

0.0007a 
± 

4.9E-05 

0.0032a 
± 

2.4E-04 

0.0011a 
± 

1.0E-04 

0.0008a 
± 

1.2E-04 

0.0001a 
± 

9.9E-06 

0.0001a 
± 

5.5E-06 

0.0001a 
± 

2.2E-05 

0.0021ab 
± 

1.3E-04 

0.0011ab 
± 

1.2E-04 

0.0000ab 
± 

0.0E+00 

0.0179ab 
± 

1.0E-03 

0.0035ab 
± 

6.6E-04 

0.0000ab 
± 

0.0E+00 

Pi. boro 0.0008ab 
± 

9.6E-05 

0.0019ab 
± 

5.2E-04 

0.0081ab 
± 

2.7E-03 

0.0020a 
± 

2.0E-04 

0.0006a 
± 

1.1E-04 

0.0032a 
± 

1.3E-03 

0.0002ab  
± 

5.0E-05 

0.0001ab 
± 

1.3E-05 

0.0007ab 
± 

2.8E-04 

0.0019c 
± 

2.9E-04 

0.0029c 
± 

5.5E-04 

0.0106c 
± 

3.1E-03 

0.0091e 
± 

2.0E-03 

0.1192e 
± 

2.6E-02 

0.0176e 
± 

5.9E-03 

T. gangeticus 0.0073b 

± 

9.5E-04 

0.0044b 

± 

6.8E-04 

0.0065b 

± 

8.1E-04 

0.0022a 

± 

3.1E-04 

0.0010a 

± 

1.2E-04 

0.0021a 

± 

2.7E-04 

0.0009d 

± 

1.2E-04 

0.0011d 

± 

1.7E-04 

0.0029d 

± 

3.6E-04 

0.0033bc 

± 

9.3E-04 

0.0029bc 

± 

6.6E-04 

0.0031bc 

± 

4.1E-04 

0.0174bc 

± 

5.2E-03 

0.0195bc 

± 

4.9E-03 

0.0151bc 

± 

4.8E-03 

T. jarbua 0.0030ab 
± 

3.5E-04 

0.0009ab 
± 

9.1E-05 

0.0016ab 
± 

2.0E-04 

0.0274d 
± 

4.5E-03 

0.0258d 
± 

9.1E-03 

0.0082d 
± 

2.3E-03 

0.0015d 
± 

2.4E-04 

0.0017d 
± 

2.9E-04 

0.0016d 
± 

3.3E-04 

0.0015d 
± 

2.9E-04 

0.0033d 
± 

8.4E-04 

0.0183d 
± 

2.5E-03 

0.0041bc 
± 

8.2E-04 

0.0181bc 
± 

4.0E-03 

0.0161bc 
± 

2.6E-03 

O. bengalense 0.0016ab 
± 

1.4E-04 

0.0005ab 
± 

5.0E-05 

0.0042ab 
± 

8.2E-04 

0.0042ab 
± 

3.3E-04 

0.0039ab 
± 

5.5E-04 

0.0023ab 
± 

3.5E-04 

0.0006b 
± 

9.1E-05 

0.0006b 
± 

1.1E-04 

0.0003b 
± 

6.2E-05 

0.0185d 
± 

4.5E-03 

0.0019d 
± 

2.7E-04 

0.0019d 
± 

2.5E-04 

0.0563d 
± 

1.3E-02 

0.0327d 
± 

6.2E-03 

0.0091d 
± 

1.1E-03 

C. telabon 0.0047ab 
± 

8.0E-04 

0.0027ab 
± 

5.5E-04 

0.0025ab 
± 

4.8E-04 

0.0072ab 
± 

1.6E-03 

0.0016ab 
± 

1.7E-04 

0.0023ab 
± 

3.3E-04 

0.0002a 
± 

3.7E-05 

0.0002a 
± 

1.9E-05 

0.0002a 
± 

2.5E-05 

0.0031b 
± 

7.5E-04 

0.0024b 
± 

5.3E-04 

0.0030b 
± 

5.7E-04 

0.0168c 
± 

4.5E-03 

0.0262c 
± 

4.0E-03 

0.0198c 
± 

3.2E-03 

B. butis 0.0265d 
± 

4.6E-04 

0.0206d 
± 

1.2E-03 

0.0108d 
± 

8.3E-05 

0.0075ab 
± 

1.4E-03 

0.0039ab 
± 

3.3E-04 

0.0039ab 
± 

2.3E-04 

0.0022f 
± 

2.5E-04 

0.0028f 
± 

2.4E-05 

0.0056f 
± 

1.5E-04 

0.0000a 
± 

4.5E-06 

0.0001a 
± 

9.6E-06 

0.0001a 
± 

1.4E-06 

0.0003a 
± 

2.9E-05 

0.0003a 
± 

3.1E-05 

0.0003a 
± 

4.2E-05 

M. bagio 0.0004a 
± 

4.0E-05 

0.0004a 
± 

8.9E-06 

0.0002a 
± 

7.9E-06 

0.0016a 
± 

2.0E-04 

0.0030a 
± 

3.6E-04 

0.0007a 
± 

4.3E-05 

0.0006ab 
± 

8.6E-05 

0.0002ab 
± 

2.0E-05 

0.0001ab 
± 

6.2E-06 

0.0001ab 
± 

2.1E-05 

0.0040ab 
± 

5.7E-04 

0.0019ab 
± 

2.2E-04 

0.0147c 
± 

2.2E-03 

0.0318c 
± 

3.4E-04 

0.0191c 
± 

3.8E-04 

S. argus 0.0105c 
± 

1.8E-03 

0.0134c 
± 

2.1E-03 

0.0077c 
± 

1.2E-03 

0.0165bc 
± 

3.1E-03 

0.0019bc 
± 

2.2E-04 

0.0015bc 
± 

2.0E-04 

0.0017c 
± 

2.7E-04 

0.0003c 
± 

7.1E-05 

0.0007c 
± 

8.9E-05 

0.0029c 
± 

6.4E-04 

0.0062c 
± 

1.4E-03 

0.0060c 
± 

1.3E-03 

0.0073c 
± 

1.6E-03 

0.0440c 
± 

9.4E-03 

0.0089c 
± 

1.9E-03 

Ps. elongatus 0.0311e 
± 

2.1E-03 

0.1003e 
± 

8.8E-03 

0.1289e 
± 

1.1E-02 

0.0197c 
± 

1.7E-03 

0.0018c 
± 

1.3E-04 

0.0044c 
± 

5.7E-04 

0.0024e 
± 

1.8E-04 

0.0021e 
± 

2.1E-04 

0.0032e 
± 

2.9E-04 

0.0002ab 
± 

9.6E-05 

0.0012ab 
± 

2.4E-04 

0.0031ab 
± 

1.1E-03 

0.0006a 
± 

2.6E-04 

0.0003a 
± 

3.4E-05 

0.0001a 
± 

7.7E-06 

Note: Values are means (±SEM, n =15). Within-species comparisons of the activities for each enzyme within a feeding category were analyzed with one-way ANOVA and Duncans’ Post Hoc with a family error 
rate of P = 0.05. Values for a specific enzyme that share a letter are not significantly different. Enzymes activities are expressed in mg min-1 mg-1 protein (U mg-1 protein). Different super script letters means 

enzyme values with significant differences at 5% level of significance. L=Liver; S=Stomach; I=Intestine. 
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possessed higher plant matter in its stomach (23.7%). 

This could be a digestive strategy adopted by T. 

jarbua to maximally utilize the low protein content in 

its natural diet. Hidalgo et al. (1999) pointed out that 

no differences existed in proteolytic activities to 

classify fishes as either omnivorous or carnivorous. It 

was also suggested that to make up for the lower 

amount of protein available in their diet, herbivorous 

fishes appeared to increase consumption rate and 

enzyme production (Hofer, 1982). Moreover, as the 

vegetal proteins are more difficult to digest than 

animal proteins (Hidalgo et al., 1999), the same 

amount of protein consumed requires a 10 times 

higher proteolytic activity in fish feeding on grass 

than in fish feeding on meal worms (Hofer, 1982). 

This argument probably explains why protease 

activity is observed in the herbivorous or omnivorous 

fishes. In contrast, U. lepturus showed lower activity 

of alkaline protease and pepsin, despite having higher 

percentage (87.7%) of animal matter in its stomach. 

Each species of the ten carnivorous fishes in this 

study, however, showed species specific responses 

towards diet in its proteolytic activities. Chakrabarti et 

al. (1995) noted that the types of diet did not have any 

bearing on the production of digestive enzymes in 

eleven confined-water teleost fishes. Chan et al. 

(2004) and German et al. (2004) investigated the 

digestive enzyme activities in four closely related 

prickleback fishes, including two herbivorous and two 

carnivorous species. Their results showed that the 

activities of digestive enzymes correlated more 

strongly with phylogeny rather than with the fish’s 

natural diets. Influence of the genetic strains on the 

activities of brush border enzymes was demonstrated 

in the crosses of Oreochromis mossambicus and O. 

aureus (Hakim et al., 2006) and in the silver perch 

Bidyanus bidyanus (Hakim et al., 2007). Furthermore, 

the activities of digestive enzymes were also 

influenced by many other factors such as the ages of 

the fishes (Kuźmina, 1996), temperature and season 

(Kuźmina et al., 1996b) and the composition of their 

diets (Zambonino Infante and Cahu, 2001). Thus, the 

relationship between digestive enzyme activities and 

feeding habits in fishes is still not very clear. 

Generally, the food and feeding relationship had 

been used to describe trophic niche of a species. But 

this relationship does not always coincide with the 

concept of digestive physiology and proves that such 

a specification is not always necessary as fish can 

consume and digest different types of food 

particularly when in competition. The specific nature 

of the enzymes in some of the mudflat carnivorous 

fishes considered here appeared to possess a specific 

feeding behavior and dietary preference. The fact that 

species like T. jarbua, M. bagio, C. telabon and S. 

argus did not have any dominant enzyme was 

suggestive of their generalist predatory behavior. 

They utilized a broad range of dietary items, which 

explained their incredible success in optimal 

utilization of estuarine habitats. Thus, it might be 

summarized from this study that the food preference 

and digestive physiology was always incomplete in 

fish communities. No such relationship could be 

established in the carnivorous fishes in the mudflat 

through present study possibly because of incomplete 

segregation of food niches in fishes. It is, therefore, 

concluded that phylogeny rather than adaptation to 

trophic resources played a determinant role for their 

digestive physiology. 
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