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Lipid and Fatty Acid Composition of Commercially Important Tropical 

Freshwater Fish Gonads: Guidelines for Specific Broodstock Diet 

Introduction 
 

Most developing countries are located in tropical 

or sub-tropical areas, and fish is a vital component of 

food security for these countries. Rivers and lakes in 

these countries were more accessible and kinder 

sources of fish, and also carry over 40% of the 

world’s known fish species (Zenebe et al., 1998). 

Moreover, the production and consumption of 

freshwater fish, has increased during recent years. 

Therefore effort is needed to improve the output 

performances and quality of the most important 

tropical freshwater fish. Currently, there is a high 

demand for stockable fry of these preferred species 

due to its faster growth rate and amenable to culture 

in different freshwater ecosystems (Mukhopadhyay 

and Kaushik, 2001).  

So far, information on the effects of broodstock 

nutrition with regard to reproductive performances 

and the egg quality of fish species of economic 

importance like commercially important tropical 

freshwater fish is scarce. Despite relative paucity of 

work on broodstock nutrition, the nutritional status of 

broodstock is known to have a profound effect on the 

reproductive performance and quality of offspring in 

several species. Studies performed on Nile tilapia 

(Gunasekara et al., 1996), turbot (Mourente et al., 

1991), lake trout (Lahnsteiner et al., 1999), goldfish 

(Mercure and Der Kraak, 1996) and yellow tail 

(Watanabe and Kiron, 1997), have demonstrated that 

incorporation of essential nutrients into the devel-

oping eggs depends on the availability of these 

nutrients in the female broodstock and consequently 

on the dietary input in the period preceding gonadal 

maturity.  

Lipids are an important component of diet, both 

as energy and essential fatty acids sources, which fish 

need for basic functions, including growth, 

reproductive and maintenance of healthy tissues 

(Sargent et al., 1989). Significant changes and 

mobilizations of lipids take place during embryonic 

development; therefore, the importance of lipids in 

broodfish nutrition has been emphasized (Sargent, 

1995). The fatty acid composition of lipids from 

gonads of fish reflects the fatty acid content of the 

lipid in the diet fed by the broodstock (Fernandez-

Palacios et al., 1995). No such data are available on 

the fatty acid composition of gonads of commercially 

important tropical freshwater fish. Therefore, 

information in this respect can be used as a guideline 
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Abstract 

 

Fatty acids compositions were analyzed in neutral lipids (NL) and polar lipid (PL) of gonads of Nile tilapia, ayungin and 

African catfish to elucidate some guesses for the fatty acids requirements for broodstock. The high value detected for both 

C16:0, C18:1 n-9 in all samples reflects a requirement for energy metabolism during the course of gonad development. The 

Lower proportion of polyunsaturated fatty acids (PUFA) was found in the NL of all gonads samples compared to PL. The 

higher percentages of n-3 HUFA in PL with respect to NL, suggests the importance of HUFA in the reproductive processes. 

In PL and NL, arachidonic acid (ARA) was the most abundant n-6 PUFA (ranged from 2.59 to 11.33% and from 0.16 to 

3.19%, respectively). A relatively higher particularly eicosapentaenoic acid (EPA)/ docosahexaenoic acid (DHA) ratio was 

obtained in both NL and PL. All wild species studied are characterized by high ARA/EPA ratio in PL ranged from 1.72 to 

5.47. Therefore, it is necessary to take into consideration not only the individual levels of HUFA but also the correct ratio 

among them (ARA/EPA/ DHA) through controlling LA and LNA level and ratio in the diets of tropical freshwater 

broodstocks.  
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for developing appropriate broodstocks diets of 

commercially important tropical freshwater fish. 

Lipids can be divided into two main classes, i.e. 

neutral lipids (NL) and polar lipids (PL). PL are 

important constituents of membranes and they 

function as precursors in eicosanoid metabolism 

(structural fat), whereas the NL serve mainly as a 

depot of lipids used as an energy source (depot fat) 

(Henderson and Tocher, 1987). Therefore, for 

comparison between some species, fatty acid 

composition in both NL and polar lipids PL must be 

investigated. 

The aim of the present study was to elucidate 

some guesses for the fatty acids requirements of 

tropical freshwater fish to develop specific diet for 

broodstock. In the authors’ opinion, examined the 

fatty acid composition from PL and NL in mature 

gonads from wild tropical freshwater fish will help in 

recommend the dietary fatty acids requirement’s for 

broodstocks of these species.  

 

Materials and Methods 
 

Eighteen samples of ripe gonads belonging to 

three species (3 samples per tissue: ovary and testis) 

of commercial importance tropical freshwater fish 

were obtained during the spawning period from 

Binangonan (having a long coast line facing the 

Laguna de Bay) in the province of Rizal, Philippines. 

These are Nile tilapia (Oreochromis niloticus), 

ayungin, (Leiopotherapon plumbeus) and African 

catfish (Clarias gariepinus). Samples of these species 

were introduced into crushed ice and transported into 

the laboratory. The samples were freeze-dried and 

stored at -80°C until lipid extraction. 

Total lipid was extracted with 

chloroform/methanol (2:1 v/v) containing 0.01% of 

Butylated hydroxytoluene (BHT) as antioxidant 

(Folch et al., 1957). The organic solvent was 

evaporated under a stream of nitrogen and the lipid 

content was determined gravimetrically. PL and NL 

were separated by a silica cartridge (Sep-pak plus, 

Waters, Milford, MA, USA) as procedure described 

by Juaneda and Rocquelin (1985). Fatty acid methyl 

esters (FAME) were prepared by transesterification 

with borontrifluoride in methanol according to the 

procedure of Miyashita et al. (1999). The resultant 

fatty acids methyl esters were purified by thin-layer 

chromatography (Silicagel 70 Plate, Wako, Osaka, 

Japan; solvent system: petroleum ether/diethyl ether/ 

acetic acid = 90:10:1, v/v). The FAME was separated 

and quantified analyzed using GC-17A gas liquid 

chromatography (GC- 17A; Shimadzu, Kyoto, Japan) 

equipped with a hydrogen flame ionization detector 

(FID) and an Omegawax 320 fused silica capillary 

column (30 m_0.32 mm i.d.; Supelco, Bellefonte, PA, 

USA). Helium was used as carrier gas with pressure 

80 kPa. The oven initial column temperature was 

160°C for 5 min, followed by an increase at a rate of 

4°C min
-1

 to a final temperature of 210°C. Individual 

FAME were identified by a reference to authentic 

standards (Funakoshi, Tokyo, Japan) and to a will 

characterized known fish oil FAME, and were 

quantified with an integrator (C-R7A plus; 

Shimadzu). 

 

Result and Discussion 
 

Lipids Classes of Gonads  

 

No clear trend was observed for total lipid, polar 

lipid and neutral lipid. The total lipid (TL) and NL 

contents, for example, in tilapia ovaries (38.68% and 

63.90%, respectively) were higher than testes 

(22.57% and 20.47%, respectively), while the 

opposite trend was observed in Silver perch (19.56% 

and 69.48% for ovaries and 33.74% and 86.15% for 

testes, respectively) which has hermaphroditic sex 

glands such that both sexes are in one individual 

(Table 1). The differences, however, were not 

observed for TL in the African catfish gonads which 

had fairly similar percentage for ovary and testis 

(19.06% and 19.45%, respectively) (Table 1). This 

may be explained by the variations in the different 

stages of gonad, because gonads samples were not 

examined individually for gonadal development and 

maturation through external symptoms. 

 

Fatty Acid Profiles 

 

Thirty two fatty acids in PL and thirty one fatty 

acids in NL were identified and compared between the 

three species. The fatty acids studied ranged from 

C14:0 to C24:1 and a few minor components of 

uncertain identity were omitted for calculation. In 

general the fatty acid profile of NL (Table 2) showed 

higher variation than that in PL (Table 3). Total 

saturated fatty acids (SFA) and monounsaturated fatty 

acids (MUFA) in NL (ranged from 42.63 to 55.83% 

and from 28.40 to 37.45%, respectively) were higher 

Table 1. Composition of total lipid (%, dry basis), neutral lipid (NL, % of total lipid) and polar lipid (PL, % of total lipid) of 

wild tropical freshwater fish gonads studied 

 

  

Ayungin 

Leiopotherapon plumbeus 

African catfish 

Clarias gariepinus 

Tilapia 

Oreochromis niloticus 

Ovary Testis  Ovary  Testis Ovary Testis 

TL 19.56±0.02 33.74±1.73 19.06±0.38 19.45±0.95 38.68±1.93 22.57±6.28 

NL 69.48±1.80 86.15±2.89 38.58±1.77 58.68±1.32 63.90±0.12 20.47±4.23 

PL 30.52±1.80 13.85±2.89 61.43±1.77 41.32±1.32 36.10±0.12 79.53±4.23 
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than those in PL (ranged from 30.71 to 54.40% and 

from 12.68 to 27.23%, respectively). The data agree 

with Ackman (1980) who reported that PL fraction 

contained lower SFA values, and much lower MUFA, 

while PUFA values were higher to NL fraction.  

 

Saturated Fatty Acids (SFA) 

 

SFA in both PL and NL constituted nearly half 

of the total fatty acids in fish gonads (Table 2). The 

most abundant SFA was C 16:0 (ranging from 16.60 to 

28.97% in PL and from 29.90 to 39.96% in NL), 

which is noted for being a predominant source of 

potential metabolic energy in fish during growth and 

particularly during the egg formation stage in female 

fish (Henderson et al., 1984). Ackman and Eaton 

(1976) reported that palmitic acid was key metabolite 

in fish and that its level was not influenced by diet.  

 

Monounsaturated fatty acids (MUFA) 

 

PL contained lower C18:1 n-9 (ranged from 6.26 

to 18.84%) than in the NL (ranged from 8.61 to 

22.76%). Ostaszewska (2005) reported that the C16:0, 

C18:1 n-9, C20:1 n-9 and C22:1 n-11 fatty acids are 

mainly catabolic for energetic purposes. High 

amounts of such acids are consumed during fish 

growth and development, and they are easily 

Table 2. Neutral lipid fatty acid composition (expressed as percentage of total fatty acids) of wild tropical   freshwater fish 

gonads studied 

 

 

Ayungin African catfish Tilapia 

 

ovary testis ovary testis ovary testis 

14:0 3.70±0.13 3.55±0.20 6.72±2.72 1.77±0.23 7.46±2.58 2.63±0.10 

14:1 0.59±0.07 0.34±0.06 

  

0.81±0.06 0.42±0.02 

15:0 1.04±0.13 0.66±0.15 1.47±0.27 

 

1.30±0.05 0.64±0.14 

16:0 34.25±0.75 36.81±2.56 39.96±3.07 29.19±1.18 37.18±2.04 30.46±2.63 

16:1n-7 10.11±1.13 6.91±0.28 7.39±0.96 7.16±0.16 13.92±1.99 5.88±0.73 

17:0 0.59±0.03 0.60±0.11 2.24±0.17 1.67±0.17 2.13±0.31 1.49±0.40 

16:3n-6 1.54±0.15 1.35±0.39 

  

1.67±0.31 1.66±0.16 

16:3n-3 0.75±0.11 1.12±0.98 

  

0.62±0.19 0.45±0.05 

18:0 9.14±0.11 12.61±0.93 5.24±0.46 10.01±0.00 7.37±1.49 17.72±0.92 

18:1n-9 12.71±0.87 15.28±2.22 15.34±2.12 22.67±0.67 8.61±0.58 14.15±6.13 

18:1n-7 5.27±0.14 4.83±0.82 7.52±0.56 6.92±0.09 6.13±0.48 5.98±0.29 

18:2n-6 (LA) 1.57±0.03 1.11±0.22 0.73±0.10 1.96±0.04 0.91±0.21 3.47±1.79 

18:3n-6 0.21±0.10 0.20±0.10 0.13±0.02 0.00±0.00 0.24±0.07 0.50±0.10 

18:3n-3 (LNA) 1.03±0.10 0.68±0.08 0.11±0.03 0.89±0.11 0.42±0.11 0.48±0.08 

18:4n-3 0.20±0.05 0.26±0.06 

  

0.09±0.00 0.05±0.02 

20:0 0.22±0.01 0.37±0.04 

  

0.28±0.01 0.12±0.01 

20:1 0.69±0.01 0.98±0.18 0.30±0.07 0.71±0.11 0.76±0.30 1.39±0.10 

20:2n-6 0.21±0.02 0.12±0.01 

 

0.27±0.07 0.11±0.06 0.53±0.31 

20:3n-6 0.41±0.00 0.23±0.06 

  

0.11±0.06 0.45±0.01 

20:4n-6 (ARA) 1.06±0.14 1.45±0.41 0.16±0.05 1.00±0.01 0.38±0.31 3.19±1.24 

20:3n-3 0.30±0.01 0.23±0.04 

    20:4n-3 0.52±0.03 0.31±0.06 

 

0.21±0.01 0.22±0.02 0.35±0.05 

20:5n-3 (EPA) 1.11±0.14 1.05±0.07 

 

0.43±0.01 0.18±0.07 1.11±0.11 

22:0 0.19±0.04 0.42±0.03 

  

0.12±0.03 0.26±0.06 

22:1 0.10±0.01 0.24±0.04 

   

0.59±0.09 

22:4n-6 0.43±0.09 0.35±0.02 

  

0.25±0.05 0.47±0.07 

22:5n-6 0.49±0.08 0.59±0.12 

  

0.29±0.02 0.56±0.06 

22:5n-3 1.73±0.18 1.37±0.11 

 

0.48±0.03 0.62±0.51 1.83±0.13 

22:6n-3 (DHA) 3.37±0.72 2.36±0.27 

 

0.77±0.03 0.86±0.78 1.62±0.77 

24:0 0.05±0.05 0.23±0.02 

    ΣSaturates 49.16±1.05 55.26±1.60 55.62±0.54 42.63±1.12 55.83±2.81 53.31±1.22 

ΣMonoenes 29.45±0.45 28.58±1.33 30.54±0.67 37.45±0.84 30.23±0.69 28.40±5.69 

Σn-6 5.89±0.22 5.41±1.27 1.02±0.13 3.23±0.02 3.94±0.94 10.59±0.25 

Σn-3 8.99±1.09 7.39±0.85 0.11±0.03 2.77±0.16 3.00±1.67 5.87±1.09 

Σn-6/ Σn-3 0.66±0.20 0.73±0.11 9.23±1.80 1.16±0.23 1.32±0.09 1.80±0.13 

Σn-3HUFA 7.02±1.05 5.32±0.22 0.00±0.00 1.88±0.05 1.87±1.37 4.90±1.05 

ARA/EPA 0.96±0.01 1.35±0.31 0.00±0.00 2.35±0.01 1.74±1.10 2.80±0.85 

DHA/EPA 3.01±0.28 2.29±0.41 0.00±0.00 1.81±0.05 3.78±3.05 1.42±0.57 

DHA/ARA 3.14±0.26 1.93±0.56 0.00±0.00 0.78±0.03 1.78±0.64 0.49±0.05 

LA/LAN 1.55±0.17 1.60±0.19 6.91±0.98 2.23±0.23 2.19±0.08 8.09±5.04 
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catabolized by the mitochondrial‚ β-oxidation 

(Henderson, 1996). Therefore, the high value detected 

for both C16:0, C18:1 n-9 in all samples reflects a 

requirement for energy metabolism during the course 

of gonad development. 

 

Polyunsaturated Fatty Acids (PUFA) 

 

Our data showed higher variation for PUFA 

profile in NL than that in PL (Table 3). The Lower 

proportion of PUFA was found in the NL of all 

gonads samples compared to PL. The primary source 

of total PUFA found in gonads samples was the highly 

unsaturated fatty acids (HUFA), namely n-3 fatty acids 

EPA and DHA. The higher percentages of n-3 HUFA 

in PL with respect to NL, suggests the importance of 

these fatty acids in the reproductive processes. The 

sum of n-3 HUFA in PL of ovaries and testis, being 

25.41% and 12.35%, respectively, in the Ayungin and 

13.75% and 13.35%, respectively for African catfish 

and in tilapia, being 18.90% and 16.39%, 

respectively, were shown to be more than twice that 

found in the muscles of the same species in our 

previous studies (Suloma et al., 2008). This result 

emphasized the importance of dietary HUFA for the 

reproductive processes, which should be kept mind 

Table 3. Polar lipid fatty acid composition (expressed as percentage of total fatty acids) of wild tropical freshwater fish 

gonads studied 

 

  Ayungin African catfish Tilapia 

  ovary testis ovary testis ovary testis 

14:0 0.95±0.32 2.62±1.47 0.42±0.08 0.49±0.02 2.14±1.03 0.91±0.37 

14:1 0.19±0.08 0.43±0.12 

  

0.46±0.21 0.23±0.03 

15:0 0.41±0.17 0.66±0.16 0.38±0.03 0.38±0.03 0.78±0.25 0.33±0.21 

16:0 28.76±0.27 33.10±2.74 18.19±1.12 16.60±0.40 28.97±0.57 21.52±2.69 

16:1n-7 1.79±0.80 4.65±1.69 2.14±0.30 0.28±0.03 3.95±1.49 1.80±1.15 

17:0 0.55±0.04 0.93±0.49 1.80±0.23 0.89±0.11 1.29±0.85 0.92±0.52 

16:3n-6 1.15±0.06 1.96±0.21 

  

1.42±0.40 1.12±0.17 

16:3n-3 0.21±0.11 0.24±0.03 

  

0.35±0.04 0.35±0.00 

18:0 13.50±2.00 15.27±1.95 17.19±0.67 11.47±1.47 12.87±1.68 11.52±0.04 

18:1n-9 6.47±1.50 6.26±0.56 18.84±1.17 14.01±0.51 6.70±1.31 8.65±2.74 

18:1n-7 1.96±0.17 3.89±0.50 5.98±0.25 6.64±0.36 3.55±1.42 4.09±0.76 

18:2n-6 (LA) 1.27±0.22 0.96±0.16 1.63±0.28 2.00±0.01 0.99±0.02 6.87±5.13 

18:3n-6 0.21±0.00 0.40±0.06 0.34±0.06 0.38±0.02 0.35±0.20 0.46±0.04 

18:3n-3 (LNA) 0.27±0.12 0.39±0.03 0.32±0.04 0.60±0.01 0.39±0.07 0.40±0.16 

18:4n-3 0.17±0.09 0.06±0.01 

  

0.13±0.04 0.05±0.02 

20:0 0.17±0.12 0.10±0.03 

 

0.36±0.04 0.12±0.05 0.31±0.22 

20:1 0.49±0.08 0.96±0.14 0.27±0.01 0.58±0.03 0.60±0.22 1.07±0.43 

20:2n-6 0.18±0.05 0.18±0.05 0.44±0.00 0.39±0.01 0.26±0.03 0.94±0.56 

20:3n-6 0.76±0.16 0.38±0.12 0.64±0.11 0.49±0.09 0.67±0.24 1.36±0.56 

20:4n-6 (ARA) 4.30±0.24 2.59±0.90 7.51±0.87 11.33±0.33 3.82±0.97 7.47±0.41 

20:3n-3 0.20±0.04 0.22±0.06 0.21±0.01 

 

0.10±0.07 0.22±0.02 

20:4n-3 0.27±0.02 0.25±0.06 0.15±0.04 0.47±0.04 0.28±0.06 0.51±0.34 

20:5n-3 (EPA) 2.65±0.71 1.53±0.59 3.84±0.29 2.88±0.12 2.39±1.02 1.78±0.82 

22:0 0.71±0.44 0.92±0.39 0.14±0.01 0.53±0.03 0.26±0.15 0.42±0.12 

22:1 0.29±0.17 0.21±0.10 

  

0.14±0.02 0.34±0.04 

22:4n-6 1.37±0.00 0.78±0.21 1.22±0.05 1.56±0.06 1.12±0.39 1.81±0.19 

22:5n-6 2.33±0.40 1.86±0.56 1.45±0.05 3.39±0.12 1.91±0.37 2.11±0.28 

22:5n-3 3.64±0.27 2.19±0.16 1.71±0.09 2.41±0.01 2.87±0.25 4.44±1.46 

22:6n-3 (DHA) 18.66±2.20 8.16±0.92 7.85±1.29 7.60±0.60 13.27±2.07 9.56±2.94 

24:0 0.56±0.37 0.80±0.38 0.11±0.01 

 

0.18±0.13 0.22±0.02 

24:1 1.50±1.45 0.96±0.39 

 

0.84±0.17 0.37±0.33 0.55±0.12 

ΣSaturates 45.59±2.14 54.40±4.09 38.23±0.09 30.71±0.96 46.59±4.06 36.14±3.67 

ΣMonoenes 12.68±0.85 17.36±1.27 27.23±0.63 22.34±0.02 15.74±1.67 16.72±0.45 

Σn-6 11.55±0.12 9.11±2.22 13.23±1.22 19.53±0.33 10.51±1.32 22.13±6.37 

Σn-3 26.05±1.46 13.04±1.77 14.06±0.97 13.95±0.45 19.77±3.53 17.18±0.04 

Σn-6/ Σn-3 0.44±0.03 0.70±0.10 0.94±0.21 1.40±0.13 0.53±0.12 1.29±0.12 

Σn-3HUFA 25.41±1.78 12.35±1.74 13.75±0.94 13.35±0.45 18.90±3.46 16.39±0.21 

ARA/EPA 1.72±0.37 1.74±0.07 1.95±0.08 3.95±0.28 1.75±0.34 5.47±2.74 

DHA/EPA 7.83±2.93 6.48±1.48 2.08±0.49 2.65±0.32 6.35±1.84 7.79±5.23 

DHA/ARA 4.39±0.76 3.67±0.74 1.08±0.30 0.67±0.03 3.57±0.36 1.27±0.33 

LA/LAN 6.35±3.59 2.40±0.21 5.30±1.44 3.36±0.03 2.62±0.51 26.56±23.45 
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when developing specific diets for tropical freshwater 

fish. These results agree with Bell et al. (1997) who 

reported that HUFA levels in eggs and newly hatched 

larvae from eight species of marine teleost were 

several folds higher than in the normal body lipids of 

these fish. Because of the specific role of (n-3) 

HUFA, especially DHA, in maintaining the structural 

and functional integrity in cell membranes, especially 

in the neural cell, the relative percentage of this 

HUFA is expected to increase during the gonad 

development stage (Mourente et al., 1991). HUFA are 

also utilized for energy, DHA and EPA are relatively 

conserved in comparison with MUFA during the 

gonad development (Henderson et al., 1984). Tocher 

and Sargent (1984) reported 31.4% DHA in Atlantic 

herring roe and 2 8.6% DHA in cod roe from the total 

phospholipid fraction. Kaitaranta (1980) also reported 

average contents of 32.6% and 25.6% of DHA in the 

PL of whitefish flesh and roe, respectively.  

In PL and NL, ARA was the most abundant n-6 

PUFA (ranged from 2.59 to 11.33 % and from 0.16 to 

3.19%, respectively). ARA is always found more in 

PL than NL of all the tissues, probably due to its 

functionality in cell membrane (Alexis and Nengas, 

1996; Bessonart et al., 1999; Fountoulaki et al., 2003; 

Furuita et al., 2003). ARA has similar biologically 

importance as EPA and DHA and considered as the 

precursor of several eicosanoids which are produced 

by the ovarian tissues and play an important role in 

the ovulation process (Venkatesh et al., 1992; Knight 

et al., 1995; Goetz et al., 1987; Murdoch et al., 1993; 

Suloma and Ogata, 2011) and cholesterol 

accumulation in tissues (Norambuena et al., 2012). 

However, EPA plays an important role in the function 

of eicosanoids derived from ARA as it competes with 

the enzyme systems producing eicosanoids from 

ARA, thus exerting a modulating influence over the 

quantity and efficacy of ARA-derived eicosanoids 

(Bruce et al., 1999).  

Our results also demonstrate a relatively low 

concentration of the other essential PUFA in both PL 

and NL, Linoleic acid (LA) (ranged from 0.96 to 

6.87% and from 0.73 to 3.47%, respectively) and 

linolenic acid (LNA) (ranged from 0.27 to 0.60% and 

from 0.11 to 1.03%, respectively), in all gonads 

samples, which reflect the low level of these fatty acids 

in the natural food. Moreover, due to capable of 

freshwater fish to convert these fatty acid to the 

higher homologues such as EPA, DHA and ARA, the 

absolute amounts of LA and LNA in the flesh and 

gonads fish will decrease (Takeuchi et al., 1983; 

Teshima et al., 1992). 

 

Fatty Acids Ratios 

 

Balance in the diet of both of n-3 and n-6 which 

are critical during organogenesis in embryos and 

larvae is required in the broodstock diet for optimum 

reproductive success of fish (Acharia et al., 2000; 

Bell et al., 1997; Nandi et al., 1999). Our results 

showed that n-3/n-6 ratios of all samples in PL and 

NL within a narrow range (0.44–1.80), with one 

exception in NL for African catfish ovary which had 

(9.23) value. This suggests that a proper balance in 

the diet of both of these PUFA which are critical 

during organogenesis in embryos and larvae is 

required in the broodstock diet for optimum 

reproductive success of fish (Bell et al., 1997). Bell et 

al. (1990) and Bromage (1995) reported that diets 

with an over high ratio of n-6/n-3 PUFA could 

exaggerate stress response in fish broodstock leading 

to cardiac pathologies. The involvement of essential 

fatty acids in broodstock fish and developing eggs and 

larvae and their fundamental involvement in stress 

reactions demands consideration of what constitutes 

an optimal or even desirable dietary ratio of n-6/ n-3 

PUFA in broodstock.  

A relatively higher DHA/EPA ratio was obtained 

in both NL and PL (ranged from 1.42 to 3.78% and 

from 2.08 to 7.83%, respectively). Similar findings on 

relative proportions of DHA and EPA have been 

reported in capelin roe (Henderson et al., 1984), and in 

fish roe in general (Tocher and Sargent, 1984). 

therefore, DHA must be superior to EPA in the 

spesiefic diets for the broodstocks of tropical 

freshwater fish. The same trend was observed for 

LN/LNA ratio in gonad either in NL and PL (ranged 

from 1.55 to 8.09% and from 2.40 to 26.56%, 

respectively). All wild species studied are 

characterized by high ARA/EPA ratio in PL ranged 

from 1.72 to 5.47. ARA and EPA, precursors for 

biosynthesis of eicosanoids (prostaglandins, 

thromboxanes and leukotrienes) which exercise 

important functions (Schacky, 2000). Moreover, the 

resulting ARA-derived eicosanoids have a 

considerably higher biological activity than the 

eicosanoids derived from EPA. EPA competes for the 

prostaglandin synthesis enzyme binding site with 

ARA and can reduce the production and efficacy of 

ARA derivatives, and thus exerts a modulating 

influence over the quantity and efficacy of ARA 

acidderived eicosanoids (Weber, 1990). It therefore 

seems that both these fatty acids, ARA and APA are 

required in sufficient quantities for an increased 

production of eicosanoids with a consequence of 

greater response in ovulation. As general it seems to 

be that n-6 family’s play an important role in 

reproduction process of tropical freshwater fish 

broodstock more than n-3 fatty acid families. When 

formulated for the broodstocks under captivity 

system, the ARA/EPA ratio may be controlled by the 

LN/LNA ratio in the feeds. Some studies have pointed 

out the physiological importance of maintaining 

correct proportions of EPA, ARA and DHA fatty acid 

in the phospholipids of the cell membrane bilayer 

(Bruce et al., 1999; Sargent et al., 1999). According 

to these studies, which have defined the critical role 

played by eicosanoids in numerous physiological 

functions, the possible interactions between their 

precursors, like ARA and EPA, support the hypothesis 
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that a suitable ARA, EPA and DHA profile in the diet 

must be supplied.  

 

Conclusions 
 

From the above results and discussion, it may be 

concluded that it is necessary to take into 

consideration not only the individual levels of HUFAs 

but also the correct ratio among them (ARA/EPA/ 

DHA) through controlling LA and LNA level and 

ratio in the diets of tropical freshwater broodstocks. 

More studies need to be conducted to determine the 

minimum and maximum value of (ARA/EPA/ DHA) 

ratio needed for broodstock diets. Moreover, the result 

showed that ARA in male is more than female 

especially in neutral lipid with the expetion of Silver 

perch which has hermaphroditic sex glands. These 

data may be an indicator to the importance of ARA 

for reproductive process in male. The study suggest 

that the PUFA requirement may differ between male 

and female. Therefore, further work is needed to 

develop mechanisms by which it can deliver specific 

diets separately to male and female which may occur 

naturally. 
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