
Turk. J. Fish.& Aquat. Sci. 23(2), TRJFAS21356 

https://doi.org/10.4194/TRJFAS21356 

    Published by Central Fisheries Research Institute (SUMAE) Trabzon, Türkiye  
 

 

 
 

 
R E S E A R C H   P A P E R 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Heterogeneous Growth Prediction in Farmed Tilapia 

Roger Domínguez-May1,* , Eucario Gasca-Leyva1, Gaspar R. Poot-López2, Marcelo Araneda3,4 
 
 
1Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional Departamento de Recursos del Mar, Km. 6 de la carretera antigua 
a Progreso, Mérida, Yucatán, México, C.P. 97201. 

2Departamento de Biología Marina, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, México Carretera a Xmatkuil 
Km. 15.5 Apartado Postal núm. 116 CP. 97315 Mérida, Yucatán, México. 

3Área de Bioeconomía, Gestión y Control de Producción., Benchmark Genetics Chile, Santa Rosa 560 oficina 25 B, Puerto Varas, Chile. 
4Programa de Doctorado en Ciencias en Bioeconomía Pesquera y Acuícola, Centro Interdisciplinario de Ciencias Marinas del Instituto Politécnico 
Nacional, La Paz, México 

 

Article History 
Received 09 March 2022 
Accepted 05 September 2022 
First Online 22 September 2022 
 
 

Corresponding Author 
Tel.: +529999429200 
E-mail: roger.dominguez@cinvestav.mx 
 
 

Keywords 
Gastropod 
Gamont 
Sporocyst 
Bacteria-like 

Abstract 
 

This study displays the application of the quantile regression theory to predict the size 
heterogeneity of cultured organisms. The analysis was applied to empirical data of the 
tilapia cultured in freshwater. Tilapia was cultured at four diets (50%, 80%, 100%, and 
Satiation). The quantile regression (QR) demonstrated to successfully model the size 
heterogeneity in tilapia (p<0,05; u<0,20), due to the feeding strategies effect. These 
results indicate tilapia fed an 80% ration size simulated a maximum biomass of 
2,345.17 and 2,853.38kg at the harvest size of 200-300g (at 180 days) and 300-400g 
(at 210 days). The simulation of the quantile curves at a higher production scale 
allowed an estimate of the biomass distribution according to different market sizes, 
this strengthens management decision making in tilapia aquaculture. Implications of 
quantile regression and size heterogeneity in aquaculture are presented here. 

Introduction 
 

Size variability is a common phenomenon in 
cultured organisms since individuals are prone to 
differences in size, weight, and growth rates (Peacor et 
al., 2007). This is mainly due to the hierarchical 
behaviour of the species, the effects of high densities 
and the rationing size that might cause competition 
(Barbosa et al., 2006; Kestemont et al., 2003; Potthoff & 
Christman, 2006). Size heterogeneity is caused by shifts 
in individual growth rates at the initial culture stage, 
stabilizing after the organisms reach a specific size 
(Peacor et al., 2007). This can affect the optimal 
management of populations, by modifying the 
population’s distribution through time and thus 
negatively impacting the economy of the farm (Borrego-
Kim et al., 2020a,b; Gasca-Leyva et al., 2008; Vicenzi et 
al., 2014).  

In aquaculture, the problem of size heterogeneity 
has been studied in species several (Araneda et al., 
2018; Borrego-Kim et al., 2020a,b; Estruch et al., 2017; 
Gasca-Leyva et al., 2008; Mayer et al., 2009;). Different 
methods have been proposed to analyse size 
heterogeneity in aquaculture, for instance, the variance 
simulation through an initial distribution (Summerfelt et 
al., 1993), the modelling of a population structured by 
size (Arnason et al., 1992; Gasca-Leyva et al., 2008; 
Peacor et al., 2007), weighing by inverse size to minimize 
the effect of the increase in the size variance (Santos et 
al., 2008), and determine the growth asymmetry (the 
evolution of heterogeneity through time) with the 
Bawling index (Borrego-Kim et al., 2020a). A stochastic 
growth model has also been proposed (Yoshioka & 
Yaegashi, 2017). Briceño et al. (2010) applied 
generalized linear models (GLMs) to analyse the broad 
growth variability in individual sizes of the octopus 
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Octopus maya in experimental systems. Araneda et al. 
(2013) modelled the growing heterogeneity of the 
Pacific white shrimp cultured in freshwater by 
considering the effect of initial density within the culture 
and via the Peacor et al. (2007) theory. In Japan, 
Yoshioka and Yaegashi (2017) proposed a stochastic 
growth model for the culture of Plecoglossus altivelis for 
educational purposes (not for the market).  

Different contributions of quantile regressions 
(QR) have been developed in aquaculture for different 
purposes (Brazenor & Hutson, 2015; Bogard et al., 2017; 
Jacobsen, 2017; Steen & Jacobsen, 2020). However, few 
applied studies model the growth path of cultured 
organisms through time despite the efforts in the use of 
QR in aquaculture. In fact, only Mayer et al. (2009), Jover 
and Estruch (2017) and Estruch et al. (2017) have 
applied (QR) to study the growth variation of the gilt-
head bream through time. And these authors modelled 
growth data from farms taking into account the effect of 
water temperature. Furthermore, given size 
heterogeneity in aquaculture is a constant problem 
faced by producers (Barbosa et al., 2006; Kestemont et 
al., 2003; Potthoff & Christman, 2006). Tilapia producers 
receive pressure from the market and financial 
conditions to generate uniform product sizes (Azaza et 
al., 2013; Borrego-Kim et al., 2020a,b; Khaw et al., 
2016). This study aims to analyse the size dispersion 
throughout quantile regression applied to biological 
growth data of the tilapia cultured. 

 

Materials and Methods  
 

Data Source  
 

Growth data from tilapia was obtained from the 
Centre for Research and Advanced Studies (CINVESTAV) 
at the aquaculture facilities of Merida Unit, Mexico, data 
was collected from an experimental system of tilapia 
fattening culture cycle. Four treatments were tested, 
three following the recommended ration by feeding 
tables:100, 80, 50 (% body weight/day) (by duplicate), 
and a Satiation rationing (>110 (% body weight/day) of 
the feeding table). Treatments were normalized under 
the [0,1] range. The experimental system consisted of 
eight circular fiberglass tanks placed indoors with a 
volume of 0.75m3 of useful capacity per tank through a 
recirculating semi-closed system and waste trap and 
constant aeration. Initial stocking density was 44.0 
fish /m3 with 14 g per fish and biometrics were carried 
out every 14 days; more culture details are found in 
Poot-López et al. (2014). 

 
Growth Model 
 

Tilapia growth has been represented by various 
exponential, logarithmic and asymptotic models, 
respectively (Ansah & Frimpong, 2015; Dumas et al., 
2010; Rosa et al., 1997; Santos et al., 2013). In this case, 
Von Bertalanffy (vB) (eq. 1) model was used considering 

the suggestion by Cai et al. (2018) and Vicenzi et al. 
(2014) on modelling with higher simplicity in order to 
improve data interpretation. Thus, the individual 
weights of the organisms through the quantiles were 
given by the following relationship: 

 

    0
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Where, Wi represents the organism’s weight for 

each quantile through time, W∞i represents the infinite 
weight of the organism for each quantile, bi is a 
constant, e represents the natural logarithmic base, ki 
represents the instant growth rate for each quantile per 
day, t0i represents the theoretical time for each quantile 
in which the organism’s weight is zero. 

It has been considered that the total population of 

organisms in the culture system   QN t
 is the sum of the 

number of individuals for each quantile and is given by: 
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Where n represents the number of quantiles and 

Ni (t) represents the number of fish for each quantile 
over time and is affected by the same constant mortality 
rate (µ) over time and is given by: 
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Where N0i represents the number of individuals 

initially seeded for each quantile. And the total number 
of organisms initially seeded N0 is given by:  
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Therefore, the total biomass of the crop system at 

time   QB t
, was determined by the sum of the 

biomasses for each quantile i, which is given by: 
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Where Bi (t) represents the biomass in each 

quantile, which was determined by multiplying the 
weight of the organism for each quantile by the number 
of individuals in each quantile i, as follows: 
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Quantile Regression  
 

Estimate the parameters by the least square 
method aims to minimize the square sum of residuals, 
whereas quantile regression (QR) aims to minimize the 
absolute value of the weighted sum of the errors 
(Koenker & Basset, 1978; Koenker & Mizera, 2004). 
Where X is a real random variable characterized by a 
distribution function F(x) as indicated below: 

 

   XF x P X x 
  (6) 

 
Where  −th quantile of X is defined by 

    1 inf :F x F X   
with   ∈ (0, 1). The quantile 

function provides a characterization of the random 
variable of X interest. Thus, quantile curves can be 
provided by an optimization problem, to find a x value 

of the random variable such as  XF x 
, is considered a 

function of asymmetric linear loss defined by: 
 

    0u u I u   
 con   ∈ (0, 1) (7) 

 

Where I () denotates the indicator function. In eq. 

(4),   is the quantile and I (u<0) is equal to 1 if u<0, 

is true and 0 if false. The  quantile defines the fraction 
of all observations that tend to be under the curve. 
Therefore, the eq. (2) represents the positive weighting 

of residuals (u>0, with weighting equal to  ) (u>0, 

with weighting equal to  -1). If 0.5  , half of the 
observations are below and the other half are above the 

curve, both have the same weighting  1  
, whereas 

the objective function (eq. 5) is simplified as  
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According to Koenker and Bassett (1978), quantile 
regression is an extension of the quantiles of the 
regression of absolute minimum deviation, which fits a 
function for a median individual. This problem is turned 
into an optimization problem (Koenker & Basset, 1982; 
Koenker & Hallock, 2001), as indicated below: 
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Where   is the solution in size (g) given by the 

model and ix  represents the i-th observed size (g) for 
tilapia. For further details about the theoretical 
approaches of QR we recommend consulting Koenker 
and Basset (1978), Koenker and Hallock (2001) and 

Koenker and Mizera (2004). If the   value is high (closet 
to 1), the QR function fits better to the high values 

within the sampling (for instance, 0.95); if the  value 
is low (close to 0) the QR function fits better to low 
values withing the sampling (for instance, 0.5). 

 
Parameterization and Statistical Validation 
 

Growth models were evaluated according to the 
significance degree of the parameters (p<0.05), 
standard error (SE), t and p-value from the statistical 
adjustment. The QR non-linear analysis was carried out 
through the R statistical software (Research 
Development Core Team, 2019) using the “quantreg” 
library (Koenker, 2005). The validation of curve quantiles 
simulation was through the root mean square error 
(RMSE), the IF index similar to R2 (Rosa et al., 1997) and 
the uncertainty coefficient of Theil (U) (Pindyck & 
Rubinstein, 1981; Power, 1993). The latter’s value is 
found between the range of 0 and 1, indicating a perfect 
match between real data (observed quantile) and 
simulated data (quantile curve) if it’s equal to zero.  

The squared error consists of three indicators 
which are represented by the error ratio due to the bias 
of the UM mean, UV variance and UC covariance (Pindyck 
& Rubinstein, 1981). Values of U<0.20 are considered 
acceptable models (Power, 1993). Additionally, the 
Akaike information criteria (AIC) (Anderson, 2008; 
Ansah & Frimpong, 2015) was used to measure the 
goodness of fit of a quantile model. The AIC describes 
the relationship between bias and variance within a 
quantile model. Low AIC values indicate a better data 
representation. Simulation of the biomass performance 
at the economic level of different harvest sizes was 
executed in Microsoft Excel 365. 

 
Data and Assumptions from the Simulation Analysis  
 

Quantile growth curves designated from the QR 
analysis (0.05, 0.10, 0.15, 0.25, 0.50, 0.75, 0.85 and 0.95 
quantiles) were employed to simulate the total biomass 
of an aquaculture production cycle (one tank) was 
predicted using harvest strategies of 120, 150, 180, 210 

and 240 days. Harvest size  hx
was considered based on 

local and national market from Mexico (SNIIM, 2020; 

Poot-López et al., 2014); for tilapia the ranges of 200x 

, 200 300x  , 300 400x  , 400 500x   and 

500g x were considered. The performance of the 
analysis was based on technical-biological assumptions 
(Table 1).  

 

Results 
 

von Bertalanffy Model  
 

The non-linear QR analysis showed statistically 
significant results on the estimate of tilapia 
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heterogeneous growth (p<0.05). Table 2 reflects the 
tested parameters of the vB model for each quantile. 
Predictions of each quantile model demonstrated that 
heterogeneous growth increased as the ration size as 
well. The analysis of non-linear QR at ration size of 50% 
predicted the higher asymptotic weights (1,923.41-
912.20g) from all quantiles 0.05-0. 95, in comparison to 
ration size at 80%, 100% and Satiation. Predicted growth 
rates (k) were less at quantile 0.05 in comparison to 
quantile 0.95 in each of the evaluated ration sizes (Table 
2). Figure 1, shows a successful representation of the 
growth variation observed based on the effect of size 
ration size through quantiles. For instance, quantiles 

0.05 and 0.95 in ration size 50% had at the 180 days a 
size variation range between 161.69 and 257.57g, 
whereas in Satiation, the size variation ranged from 239. 
67 to 461.09g. 

 
Validation of Growth Models  
 

Simulation statistics showed that the vB model 
successfully represents the heterogenous growth 
predictions of tilapia. Results are shown in Table 3 for 
each rationing treatment for tilapia. The von Bertalanffy 
model's root mean square error (RMSE) predicted 
values of 3.31-13.22g, IF in 97.62-99.57% and an AIC in 

Table 1. Technical-biological and management parameters of tilapia farmed systems 

Parameter Concept Unity Value Source 

 Tank volume m3 267.00 Poot-López et al., (2014)  

T  
Daily mortality rate Tilapia/day 0.00044 Empirical estimate  

(average) 

0TN  
Initial number of individuals  

homogeneous case 
Tilapia 11000 Local company 

0Tx  Stock weight of tilapia g 14 Local company 

 
 
 

Table 2. Results of non-linear quantile regression of the empirical data growth of tilapia fed at different ration sizes (50, 80, 100% 
and Satiation). W

 is the asymptotic weight of the fish, k is the growth rate and t0 is theoretical time in which the fish has zero 

weight. SE and t represent the standard error and the t-value statistical adjustment, respectively 

 Parameters 
Quantile    W

  SE W
  t W

 k   SE k   t k  
0t   0SE t   0t t  

r=50% 
0.05 1,923.41 2,353.29 0.82 0.0021 0.0013 1.70 -94.69 14.90 -6.35 
0.15 950.60 353.47 2.69 0.00033 0.0007 4.79 -82.15 6.43 -12.77 
0.25 1,117.78 337.55 3.31 0.00031 0.0005 6.12 -80.52 4.85 -16.61 
0.5 1,481.51 356.32 4.16 0.0028 0.0004 7.92 -81.55 3.54 -23.03 
0.75 1,305.11 363.09 3.59 0.0032 0.0005 6.48 -79.52 4.38 -18.15 
0.85 989.61 385.84 2.56 0.0038 0.0009 4.49 -74.04 5.54 -13.37 
0.95 912.20 246.85 3.70 0.0043 0.0007 5.87 -68.20 4.70 -14.53 
r=80% 
0.05 840.29 909.21 0.92 0.0041 0.0030 1.35 -67.43 30.47 -2.21 
0.15 463.35 119.52 3.88 0.0072 0.0015 4.73 -47.60 7.65 -6.22 
0.25 553.87 86.30 6.42 0.0068 0.0008 8.44 -47.49 3.71 -12.80 
0.5 598.12 63.97 9.35 0.0070 0.0006 12.57 -45.77 2.40 -19.07 
0.75 647.73 58.27 11.12 0.0071 0.0005 14.61 -45.81 1.68 -27.27 
0.85 635.80 41.43 15.35 0.0075 0.0004 18.73 -43.91 1.39 -31.62 
0.95 575.98 35.88 16.05 0.0085 0.0005 16.61 -40.92 1.51 -27.08 
r=100% 
0.05 362.82 80.34 4.52 0.0071 0.0015 4.83 -57.96 9.14 -6.34 
0.15 450.36 48.02 9.38 0.0079 0.0007 11.23 -44.36 2.57 -17.23 
0.25 465.49 41.19 11.30 0.0082 0.0006 12.93 -42.42 2.30 -18.47 
0.5 497.99 31.80 15.66 0.0091 0.0005 17.53 -37.24 1.65 -22.61 
0.75 565.33 42.83 13.20 0.0092 0.0006 15.12 -36.80 1.50 -24.57 
0.85 599.87 40.37 14.86 0.0093 0.0005 17.25 -36.48 1.33 -27.48 
0.95 665.89 28.37 23.47 0.0091 0.0004 25.55 -36.03 0.96 -37.51 
Satiation 
0.05 351.47 81.39 4.32 0.0100 0.0025 3.95 -32.18 10.20 -3.15 
0.15 444.48 46.40 9.58 0.0089 0.0009 9.58 -38.93 3.71 -10.48 
0.25 449.74 37.49 12.00 0.0092 0.0007 12.87 -38.80 2.36 -16.47 
0.5 482.30 33.78 14.28 0.0097 0.0006 16.27 36.69 1.53 -24.04 
0.75 582.68 72.71 8.01 0.0095 0.0011 8.88 -36.25 2.63 -13.80 
0.85 618.67 68.23 9.07 0.0099 0.0009 10.73 -33.89 1.88 -18.04 
0.95 649.70 52.48 12.38 0.0105 0.0008 12.96 -31.95 1.61 19.83 
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19.64-36.49 for tilapia growth data. The uncertainty 
coefficient of Theil showed that in vB model can 
adequately recreate the growth simulation in the 
analysed specie. Quantile curves had values of U<0.2 
(Power, 1993) for each rationing treatment. 
 
Simulation of Production to a Commercial Production 
Cycle 
 
Tilapia Study Case 
 

Tilapia biomass from a production cycle was 
simulated based on quantile curves that considered a 
commercial tank and assumptions from Table 1. This 
analysis offers a harvest alternative for producers, as it 
benefits according to the size demands of the market. In 
Figure 2 the simulated biomass distribution is shown 
between 120 and 240 days according to different sizes. 
The harvest size range of <200, 200-300g and 300-400g 
were predominant in individuals fed with 50% and 80% 
rationings among the harvest range of 210 to 240 days, 
respectively. Tilapia fed with 50% rationing showed a 
biomass peak of 2,173.64 and 2,240.15kg on the harvest 
size of 200-300 g (210 days) and 300-400g (240 days). 
Similarly, fish fed with 80% rationing had biomass 
ranging from 2,345.17 and 2,853.38 kg on the harvest 
size of 200-300g (180 days) and 300-400g (210 days). 

On the other hand, the 100% and Satiation 
rationings ranging from 200-300g, 300-400g and 400-
500g had higher harvest frequency between 210 and 
240 days, respectively. Tilapia fed with 100% rationing 
showed a biomass peak of 2,087.73 and 1,889.06kg on 
the harvest size of 300-400g (210 days) and 400-500g 
(240 days), respectively. The Satiation rationing had a 
biomass between 1,799.18 and 1,772.43kg on the 
harvest size of 200-300g (180 days) and 300-400g (210 
days), respectively. Harvest size higher than 500g was 
found in tilapias fed with 100% and Satiation rationings 
during harvest days of 210 and 240, respectively.  

 

Discussion 
 

Growth Model 
 

vB successfully modeled the pattern changes in the 
size of tilapia through quantiles. Similar results were 
reported in studies carried out for the gilt-head bream, 
where the effect of temperature was considered, 
although these authors used an exponential model 
(Estruch et al., 2017; Jover & Estruch, 2017; Mayer et al., 
2009). The growth representation of cultured organisms 
by mean models based on regressions that are single or 
multiple, non-linear or linear, is not sufficient. This could 

  

  
Figure 1. Quantile regression of the von Bertalanffy model from data of tilapia cultured and fed at ration size of 50% (a), 80% (b), 100% 
(c) and Satiation (d). 
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comply with the method of least squares since it only 
assigns a mean model to represent the growth of the 
organisms, but this means a loss in information, 
particularly of the individual growth variation (Grosjean 
et al., 2003).  

 
Quantile Regression and Size Heterogeneity 
 

Similar to this study, Gasca-Leyva et al. (2008) and 
Borrego-Kim et al. (2020a,b) in tilapia (Oreochromis 
niloticus) and Briceño et al. (2010) in Octopus maya also 
didn’t incorporate the effect of a technical-biological 
variable with an influence over dispensing of the initial 
sizes, where growth heterogeneity is later on attributed 
(Peacor et al., 2007). However, they indicate that size 
dispersion is an occurring phenomenon even in 
homogenous cultures (Borrego-Kim et al., 2020a,b; 
Mayer et al., 2009). Results from the quantile curves 
observed in this study show an increase in the growth 
variation of tilapia when increasing the ration size. This 
agrees with the observations of Araneda et al. (2018) on 
growth of shrimp cultured at high densities, Domínguez-
May et al. (2011) on growth of the tilapia at ration sizes 
different, Estruch et al. (2017) and Mayer et al. (2009) 
on growth of the gilthead seabream as a function of 
temperature, even though factors were not included in 

the proposed growth equations in this study, due to a 
more direct and parsimonious application of QR by the 
producers (Cai et al., 2018). However, it is evident that 
the quantile regression based on the selected model 
(vB), shows behavior that allows classifying the batches 
according to the growth patterns of each quantile. 

This work differs from the previously mentioned 
studies because it assumes that the distribution of the 
organisms is independent of their size (Borrego-Kim et 
al., 2020a). This could be in conflict with the Peacor 
theory which has been approached in other studies of 
tilapia during the growth stabilization period 
(Domínguez et al., 2011; Gasca-Leyva et al., 2008). These 
percentage shifts were present in all rationings except 
Satiation, thus indicating that a reduction the rationing 
size can lead to higher competition for food between the 
individuals and consequently generate size 
heterogeneity. A similar pattern was observed by 
Ribeiro et al. (2015), where fish were fed three times per 
day and displayed low size heterogeneity. This 
information corroborates that a high feeding frequency 
allows food access to most fish and consequently 
reaches a homogeneous growth in comparison to 
individuals fed only one time per day. 

QR can simultaneously determine several growth 
parameters due to its versatility, and this demonstrates 

Table 3. Validation of the von Bertalanffy simulation model for tilapia 

 Statistical indicators 

Quantile  
RECM IF Theil (U) UM UV UC AIC 

r=50% 
0.05 3.31 0.9953 0.0317 0.1430 0.0009 0.8562 19.64 
0.15 3.58 0.9957 0.0194 0.6484 0.1020 0.2568 20.60 
0.25 4.44 0.9944 0.0285 0.4390 0.1874 0.3869 23.23 
0.5 4.80 0.9944 0.0293 0.4013 0.0967 0.5090 24.18 
0.75 5.80 0.9929 0.0289 0.5140 0.1373 0.3585 26.46 
0.85 4.64 0.9959 0.0322 0.0054 0.0479 0.9501 23.75 
0.95 5.00 0.9961 0.0247 0.3817 0.1227 0.5044 24.67 
R=80% 
0.05 9.16 0.9808 0.0638 0.1439 0.0053 0.8512 32.02 
0.15 8.24 0.9884 0.0501 0.1419 0.0115 0.8474 30.74 
0.25 4.73 0.9968 0.0269 0.0828 0.0867 0.8358 23.98 
0.5 6.01 0.9959 0.0313 0.0329 0.0001 0.9670 26.90 
0.75 6.43 0.9963 0.0304 0.0144 0.0729 0.9180 27.71 
0.85 6.04 0.9970 0.0277 0.0068 0.0468 0.9498 26.96 
0.95 4.27 99.85 0.0188 0.0438 0.0691 0.8920 22.74 
r=100% 
0.05 10.41 0.9762 0.0700 0.2705 0.6217 0.1522 33.58 
0.15 8.00 0.9902 0.0495 0.0016 0.0016 0.9969 30.37 
0.25 10.54 0.9852 0.0604 0.0140 0.0003 0.9857 33.73 
0.5 13.22 0.9826 0.0646 0.0302 0.0113 0.9594 36.49 
0.75 10.64 0.9917 0.0447 0.0400 0.0028 0.9574 33.84 
0.85 9.94 0.9938 0.0394 0.0092 0.0372 0.9562 33.02 
0.95 11.42 0.9934 0.0395 0.0842 0.2323 0.7001 34.71 
Satiation 
0.05 7.57 0.9902 0.0385 0.3889 0.0141 0.5980 29.71 
0.15 4.09 0.9978 0.0225 0.0524 0.0844 0.8692 22.22 
0.25 3.74 0.9984 0.0195 0.0646 0.0071 0.9288 21.12 
0.5 4.37 0.9982 0.0209 0.0067 0.0310 0.9645 23.03 
0.75 6.47 0.9972 0.0262 0.0008 0.0000 0.9992 27.79 
0.85 6.91 0.9975 0.0246 0.0529 0.1793 0.7807 28.60 
0.95 10.09 0.9957 0.0323 0.0674 0.2418 0.7081 33.20 

 

 
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an advantage over the least squares method (Grosjean 
et al., 2003). QR shows a correlation between the 
parameters of the tilapia growth model (Grosjean et al., 
2003), mainly from the asymptotic weight (W∞) and the 
growth rate (k). Overall, we observed that the higher the 
asymptotic weight, the lower the growth rate. One 
possible explanation for this is that higher W∞ values 
could compensate for lower growth rates. That is, there 
could be a higher rate of growth inhibition in the 
presence of a higher lack of feed, as in the case of 50% 
ration size, and in the opposite case higher ration sizes 
as Satiation. W∞ were lower than the quantiles below 
the median and vice versa to quantiles above the 
median at rationings of 100% and Satiation. Whereas 
W∞ at rationings of 50% and 80% had a reversed 
relationship with higher quantiles below the median vs. 
quantiles above the median. This data can reflect an 
advantage of the QR over the least square method since 
the growth rate in the latter is the same throughout all 
individuals, but the QR method can determine a growth 
rate for each size group and consequently show the 
possible effects on the inhibition of large individuals 
over the ones with smaller size regulated by size 
rationing (Grosjean et al., 2003). 

Simulation to Commercial Size  
 

This study has proposed the validation of growth 
models through the Theil index in quantile curves with 
the aim of using these models to simulate data in a 
larger time frame (Pyndick & Rubinstein, 1998; Power, 
1993). The method of this study differs from validations 
performed by Estruch et al. (2017), although the 
statistical value employed by these authors is also found 
between 0 and 1 as the Theil index and its interpretation 
are similar. Quantile curves of tilapia in this study 
fulfilled the Theil requirement of less than 0.20 (Table 
3). Once validated, both growth models were used to 
simulate different harvest strategies and different 
market size for production estimates (Figure 2). This was 
also carried out by Estruch et al. (2017) with gilt-head 
bream, although these authors studied the economic 
production of the quantiles. They conclude that 
generated data from quantiles is more robust than 
average models and that it can be used in decision-
making for aquaculture management; for instance, 
classification by harvest size to have a better estimate of 
the population biomass (distribution) within a given 
time (Estruch et al., 2017; Mayer et al., 2009; Vicenzi et 

  

  

Figure 2. Biomass distribution of tilapia according to harvest days and sizes classified by quantiles 0.5,0.15,0.25,0.50,0.85, 0.95 for 
the 50 – Satiation ration size. 
 

 -

 500

 1.000

 1.500

 2.000

 2.500

120 150 180 210 240

P
ro

d
u

ct
io

n
 (

kg
)

Time (days)

<200 200-300 300-400 400-500 >500

 -

 500

 1.000

 1.500

 2.000

 2.500

 3.000

120 150 180 210 240

P
ro

d
u

ct
io

n
 (

kg
)

Time (days)

<200 200-300 300-400 400-500 >500

 -

 500

 1.000

 1.500

 2.000

 2.500

120 150 180 210 240

P
ro

d
u

ct
io

n
 (

kg
)

Time (days)

<200 200-300 300-400 400-500 >500

 -

 200

 400

 600

 800

 1.000

 1.200

 1.400

 1.600

 1.800

 2.000

120 150 180 210 240

P
ro

d
u

ct
io

n
 (

kg
)

Time (days)

<200 200-300 300-400 400-500 >500

b)  r=50% d) r=100% 

c)  r=80% e) satiation 



 
Turkish Journal of Fisheries & Aquatic Sciences TRJFAS21356 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

al., 2014), as it was demonstrated in this study.  
Another advantage of this analysis can be exploited 

by species that have prizes defined by the market. With 
this method, producers could strive toward better 
financial conditions. Additionally, Mayer et al. (2009) 
found few changes in the biomass of homogenous lots, 
but heterogenous lots were characterized by important 
changes in fish distribution through time. A significant 
increase in size variability and an increase in the distance 
between quantiles through time is observed in this 
study in Figure 2a,b.  

Therefore, this type of analysis (QR) can provide a 
positive impact on the management of tilapia 
production, since by knowing the size distribution of 
individuals, farmers can plan management strategies, 
such as partial harvests to reduce the effect of density 
on the growth of organisms, for the purpose of splitting 
or obtaining capital. At the same time, this may result in 
a marginal decrease in costs. However, to be certain of 
this, future experimentation may be required. This 
opens up new research possibilities to strengthen 
aquaculture, not only for tilapia, but also for other 
farmed species. The application of this tool could also 
allow us to strengthen productive monitoring and 
control systems to evaluate Key Performance Indicators 
(KPIs). 

 

Conclusions 
 

The quantile regression analysis has demonstrated 
great utility in the description of size heterogeneity and, 
consequently, in organisms distribution by sizes and 
harvest time. The simple growth curves of von 
Bertalanffy successfully modelled the quantiles of the 
observed data. The ration size showed to contribute to 
the size heterogeneity of tilapia. This directly affects the 
reached biomass and its distribution according to the 
different market sizes, if does not account, which could 
have a direct effect on the economic functions such as 
sales revenue, production costs and economic benefits 
per production unit. The predictive application in this 
study could be used as a tool based on the business 
analytics and applied to real production conditions as a 
tool for production control and surveillance, validation 
for production plans and comparison between Key 
Performance Indicators (KPI´s) vs. observed results. 
According to the latter and the results, it is possible to 
design by means of assumptions the prescriptive 
analysis that would allow an aquaculture company to 
estimate optimal values of management variables, such 
as ration or seeding density, that would allow 
maximizing the economic benefit or minimizing the 
production costs of the company in particular. According 
to the latter and its results, it is possible to design by 
means of assumptions the prescriptive analysis that 
would allow an aquaculture company to estimate 
optimal values of management variables, such as ration 
or seeding density, that would allow maximizing the 
economic benefit or minimizing the production costs of 

the company in particular The contribution of this study 
could be considered as a base line for future research 
that takes into account economic and management 
factors such as harvest analysis and decision-making, 
partial harvest, and optimal harvest and rotation times. 
Lastly, the growth model here analysed through 
quantile regression, can easily be applied to other 
species cultured at similar conditions, as well as 
incorporate the effects of other variables with an 
influence over size dispersion.  
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