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Abstract 
 
Skipjack tuna (SKJ) is one of the most targeted fish species globally, especially in the 
Indian Ocean. SKJ fishery data from Iranian purse seiners and multisatellite remote 
sensing data were used for hotspot habitat modeling from 2010 to 2018. Spatial and 
temporal variables were the most important predictors in the generalized additive 
model (GAM), and 58.6% of the variance was explained. In the MaxEnt model, sea 
surface temperature (SST), eddy kinetic energy (EKE), and sea surface height (SSH) 
were the most important predictors of SKJ hotspot habitat suitability in the tropical 
Indian Ocean between 2°S and 2°N. Furthermore, of the total studied area in the Indian 
Ocean defined as optimal habitat (habitat suitability index>0.6), 6.8% and 5.3% 
exhibited ordinary habitat suitability (AUC=0.934, P<0.01) and hotspot habitat 
suitability (AUC=0.952, P<0.01), respectively. Iranian purse seiners are distributed 
mainly in tropical areas, and in the present study, SKJ habitat was affected by 
environmental variables, as determined using multisatellite remote sensing data. In 
general, for effective regional monitoring and management strategies to ensure 
sustainable fisheries, diverse datasets compiled using satellite datasets and habitat 
modeling can help identify potential hotspot habitats, thereby enabling more accurate 
suitable habitat zone predictions and more efficient stock management. 
  

 

Introduction 
 

Fisheries managers aim to access adequate and 
safe food from nature by exploiting marine stocks in 
authorized areas with high concentrations of their 
target fish species. Tuna is a major commercially 
important group of fish in the world’s oceans (Maguire 
et al., 2006; McCluney et al., 2019). The Indian Ocean, 
which is the origin of 19% of total tuna catches 
worldwide (International Seafood Sustainability 
Foundation, 2020), has three main targeted tuna 

species: yellowfin (YFT, Thunnus albacares), skipjack 
(SKJ, Katsuwonus pelamis), and bigeye (BET,Thunnus 
obesus). SKJ inhabits the upper ocean (shallower than 
100 m) above the oceanic mixed layer and is distributed 
in warm waters (>28°C) in the temperate and tropical 
ocean between 45°N and 40°S (Kim et al., 2020; Lehodey 
et al., 1997). The spawning season of SKJ occurs mainly 
during the monsoon and intermonsoon periods (Grande 
et al., 2014). SKJ are opportunistic predators (Nakamura 
1965) and patrol considerable areas in search of forage 
(Sund et al., 1981). They are most often captured by 
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fishermen using purse seines in the Indian Ocean 
(Fonteneau et al., 2000; Druon et al., 2017). Despite high 
landings worldwide (3.16 million tons in 2019; FAO 
2020); SKJ stocks remain at biologically sustainable 
levels (IOTC 2017). SKJ is frequently targeted by purse 
seine (associated school) fisheries, and the reported 
catch of this species in the Indian Ocean has increased 
steadily from the 1980s, peaking at over 600 000 tons in 
2018 before decreasing slightly to approximately 550 
000 tons in 2019. In 2018, purse seines accounted for 
approximately 49% of total SKJ catches, whereas gillnet, 
pole-and-line, and line fisheries accounted for 20%, 
20%, and 5%, respectively (FU 2020; International 
Seafood Sustainability Foundation 2020; Muhsin et al., 
2020). Iran is a major exploiter of tuna in the Indian 
Ocean; its SKJ catch in 2006 was 102 668 Mt; however, 
this number dropped to approximately 50,000 t (44.4% 
of tropical tuna catches) in 2018 (Akhondi 2019). 

Habitat modeling is a crucial element of 
ecosystem-based fisheries management (EBFM), 
especially for regional tuna fisheries (Juan-Jordá et al., 
2018). Predictive distribution modeling using habitat 
data is commonly used to investigate the 
spatiotemporal dynamics of the tuna population and has 
been applied to many fish species worldwide (Vayghan 
et al., 2020a and b; Vayghan et al., 2016a and b; Lan et 
al., 2018; Lee et al., 2020; Teng et al., 2021). 
Environmental conditions significantly influence tuna 
distribution (Lee et al., 2020; Vayghan et al., 2020b), 
feeding habitats (Vayghan et al., 2020a; Mondal et al., 
2021), annual recruitment levels (McKechnie et al., 
2016), and reproductive traits (Ashida 2020). SKJ 
movement varies widely and is reportedly affected by 

large-scale oceanographic variabilities such as ocean 
currents, sea surface temperature (SST), sea surface 
chlorophyll-a (SSC), and sea surface height (SSH; 
McKechnie et al., 2016; Mugo et al., 2010; Mugo and 
Saitoh 2020). Although habitat suitability modeling has 
its own limitations (Vayghan et al., 2016a), different 
models including the habitat suitability index (HSI) 
model (Chen et al., 2010; Vayghan et al., 2016a; 
Vayghan et al., 2013), optimized genetic algorithm 
(Vayghan et al., 2016b; Sadeghi et al., 2013), and 
generalized additive model (GAM; Vayghan et al., 2017; 
Lan et al., 2018)—can be used to assess the suitability of 
potential habitats and the factors influencing the 
movement of marine organisms. Multisatellite remote 
sensing is a powerful tool for determining ocean sea 
surface characteristics. Its fast and large-scale data 

preparation enables scientists to support the 
productivity of fisheries and the management of pelagic 
species (Khan et al., 2020; Lan et al., 2018) and to gain 
insight into the tuna living ecosystem and the factors 
affecting it (Lee et al., 2020; Nieto et al., 2017; Vayghan 
et al., 2020b). Pelagic potential habitat hotspots are a 
topic of interest in fishery prediction (e.g., as fishing 
grounds) and in the development of policies related to 
marine resource management and conservation (Mugo 
et al., 2020a). Hence, multisatellite remote sensing data 
are valuable for fisheries exploitation and management 
and can assist scientists in expanding sustainable 
strategies for fisheries management and modeling tuna 
habitats across the world’s oceans. The present study 
developed an empirical habitat suitability model for SKJ 
by using Iranian purse seiner fishing data and 
multisatellite remote sensing data. The proposed model 
can be used to determine optimal combinations of 
environmental variables and to detect potential hotspot 
habitats in the Indian Ocean. 

 

Material and Methods 
  
SKJ Fishing Data 
 

SKJ fishery data from Iranian purse seine fishing 
fleets in the Indian Ocean were collected for the period 
from 2010 to 2018 for application in various habitat 
models. The fishery data consisted of days employed, 
SKJ weight, year, month, latitude, and longitude. The 
effort and fishing data were pooled by year and month 
by using a 1° × 1° spatial grid. The catch per unit effort 
(CPUE) of the tuna purse seine fishery fleets was used as 
a reliable index of stock abundance in the fishing zones 
(Vayghan et al., 2017; Vayghan et al., 2018). Accordingly, 
CPUE served as the response variable and multisatellite 
environmental data, temporal (month and year), and 
spatial (latitude and longitude) data served as 
explanatory variables in the modeling process. 
 
Multisatellite Remote Sensing Data 

 
Based on relevant literature, a set of remotely 

sensed environmental variables were hypothesized to 
be associated with the potential SKJ catch from 2010 to 
2018 (Table 1) and were applied in this study. The 
monthly satellite data from 2010 to 2018 presented in 
Table 1 were downloaded from various online databases 
to be fed into the model as follows: (i) SSC monthly 

Table 1. Multisatellite remote sensing variables and satellite altimetry data applied in the model 

Habitat Variables Units Data Source Resolution 

Sea Surface Temperature (SST) °C MODIS 4 km × 4 km 
Sea surface chlorophyll-a (SSC) mg m−3 MODIS 4 km × 4 km 
Sea Surface Salinity (SSS) psu MOVE-MRI 10 km × 10 km 
Sea Surface Height (SSH) cm AVISO 25 km × 25 km 
Mixed Layer Depth (MLD) m HYCOM 1/12° × 1/12° 
Depth of 20 °C Isobath (D20) m ORAS5 0.25° × 0.25° 

Eddy Kinetic Energy (EKE) m2s−2 AVISO 25 km × 25 km 

 

https://coastwatch.pfeg.noaa.gov/erddap/griddap/erdMH1sstdmday.html
https://coastwatch.pfeg.noaa.gov/erddap/griddap/erdMH1chlamday.html
http://www.apdrc.soest.hawaii.edu/
http://www.apdrc.soest.hawaii.edu/
https://www.hycom.org/dataserver/gofs-3pt0/analysis
http://www.apdrc.soest.hawaii.edu/
https://www.hycom.org/dataserver/gofs-3pt0/analysis
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composite fields were prepared by data from the 
National Oceanographic Data Center at Oregon State 
University (http://www.science.oregonstate.edu); (ii) 
SST, SSH, MLD, and sea surface salinity (SSS, depth of 
20°C isobath (D20), and eddy kinetic energy (EKE) data 
were collected from the Asia-Pacific Data-Research 
Center at the University of Hawaii 
(http://www.apdrc.soest.hawaii.edu). All the remote 
sensing variables were then resampled and computed as 
monthly means on a lower spatial grid of 1° × 1° 
resolution to meet the spatial resolution of the fishery 
data using the MATLAB (version R2015a) and Interactive 
Data Language (IDL, version 7.0) software packages. 
Multicollinearity was tested using a variance inflation 
factor (VIF) to avoid model overfitting (Catterjee and 
Hadi 2006; Montgomery et al., 2007). 
 
Model Developing  
 

To predict potential SKJ spatial habitat patterns, a 
GAM (Guisan et al., 2002; Hastie and Tibshirani 1990) 
was developed using the GAM function and mgcv 
package to identify nonlinear relationships among the 
covariates and the response variable in a 
semiparametric manner and to effectively and flexibly 
explain the variance in the response variable (Maunder 
and Punt 2004). The model can be written as follows: 

 

g(μi) = μ +∑fj(Xi)

p

j=1

 

 
where μi is the response variable (CPUE), μ 

represents the intercept term in the fitted model, fj is a 
smooth function (such as a spline or loess smoother), 
and xi represents the independent variables. The 
effective degrees of freedom were estimated, and all 

the covariates were assumed to be continuous. To avoid 
log-transformation problems arising from the inability of 
the log-link function to handle zeroes, 10% of the mean 
CPUE was added to zero values of SKJ CPUE ((Lan et al., 
2018; Su et al., 2008). In the first constructed model, the 
effects of all of the spatial (latitude and longitude), 
temporal (year and month), and environmental (SST, 
SSC, SSS, SSH, MLD, D20, and EKE) variables were 
considered. To identify redundant variables in the first 
run, the fits of the models were evaluated using 
standard diagnostics: changes in the residual variance, 
the Akaike Information Criterion (AIC; Akaike 1998), 
variance explained, R2 values, and P values calculated 
using a chi-square test. The model selection was 
conducted using a stepwise procedure based on the 
lowest AIC value. The GAMs were constructed in R 
(version 4.0.0) software (R Development Core Team 
2020). 
 
MaxEnt Model  

 
The maximum entropy (MaxEnt) species 

distribution model (SDM) identifies the probability of 
appropriate habitat for a species existing at each pixel 
within a geographic region by combining environmental 
layers with species presence data (Phillips and Dudik 
2008). Because the primary SKJ fishing season 
(accounting for 76% of catches) occurs during the cold 
months (January, February, March, April, October, 
November, and December), we used cold-season data in 
this study. Possible SKJ habitats in the Indian Ocean 
were identified using a combination of SKJ presence 
data with positive catches and sparse sets of 
environmental data. To identify SKJ habitat hotspots, we 
used the 75th percentile of CPUE data as indicating the 
highest probability of a fish catch or relevant presence 
records. The habitat suitability analysis of SKJ was 

 
Figure 1. Study area and geographical distribution of Iranian purse seiner fishing in the Indian Ocean. 
 

 

 

http://www.science.oregonstate.edu/
http://www.apdrc.soest.hawaii.edu/
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conducted using MaxEnt software (version 3.4.4). The 
cold-season SKJ presence data were split into training 
(70%) and testing (30%) sets. We evaluated the models’ 
predictive performance (sensitivity and specificity) and 
identified the most important environmental variables 
to SKJ habitat suitability by using the area under the 
curve (AUC) of the receiver operating characteristic 
(ROC) curve and the percent variable contributions, 
respectively.  
 

Results 
 
The spatial distribution of SKJ catch was 

predominantly located within the tropical Indian 
Ocean and the Oman Sea (Figure 1). Multicollinearity 
diagnostic analysis of environmental variables revealed 
no correlations among any of the environmental 
variables except SSH (VIF>10). The GAM results clarified 
the effects of the temporal, spatial, and environmental 
variables on SKJ CPUE (Table 2). The overall variance 
explained by the model was 58.6%; temporal, spatial, 
and environmental factors accounted for 34.3%, 14.4%, 
and 9.8%, respectively, of the variance explained 
(Table 2). According to the GAM, the most crucial 
environmental variables were SSS, MLD, SSH, and SSC, 
in that order. The SKJ had a specific preference for the 
level of environmental variables during the cold season; 
the GAM plots indicated that oceanographic variables 
affected SKJ CPUE (Figure 2).  

The ordinary habitat suitability and hotspot habitat 
suitability associated with environmental variables in 
the MaxEnt model were different (Figure 3). Of the 
optimal habitat (HSI>0.6) identified within the study 
area, 6.8% and 5.3% exhibited ordinary habitat 
suitability and hotspot habitat suitability, respectively. 
The hotspot habitat area was drooped nearly 1.5% 
(approximately 45000 km2) smaller than the ordinary 
habitat area (Figure 3b). We calculated the percent 
contributions and permutation importance values for 
each factor in the MaxEnt model for two SKJ habitat 
suitability scenarios (i.e., ordinary habitat suitability and 
hotspot habitat suitability; Table 3). In both scenarios, 
SST, EKE, and SSH strongly contributed to the model and 
affected SKJ habitat suitability (Table 3). The model 
provided high-confidence predictions of ordinary 
habitat suitability (AUC=0.934, P<0.01) and hotspot 
habitat suitability (AUC=0.952, P<0.01; Figure 4).   
 

Discussion 
 

Effective regional monitoring and management 
strategies are key to ensuring sustainable management 
of tuna resources, especially in areas with high habitat 
variation (Hsu et al., 2021). In this study, we applied 
multisatellite remote sensing environmental data and 
spatial and temporal data to identify associations with 
the CPUE of SKJ caught by Iranian purse seiners in the 
Indian Ocean. SKJ is mainly caught in the cold season in 

Table 2. Statistical results of generalized additive modeling after skipjack tuna data input 

Model 
Residual Degree 

Freedom 
Residual 
Deviance 

Deviance 
% Of Deviance 

Explained 
AIC % of AIC explained Pr(>Chi) 

Null 1149.00 9588.60 - - 16.82 16.82  

Year 1141.00 8482.90 1105.70 11,50 5581.59 43.19 <2.2e-16 
Month 1130.00 6297.30 2185.57 22,79 5260.97 14.90 <2.2e-16 
LAT 1100.00 5428.90 868.42 9,06 5150.33 4,39 <2.2e-16 
LON 1059.00 4914.00 514.92 5,37 5117.73 0,59 1.67E-11 
SST 1058.00 4886.80 27.20 0,28 5113.35 4,97 0.00826 
SSS 1049.10 4663.50 223.28 2,33 5076.41 6,92 4.14E-09 
MLD 1033.30 4351.90 311.57 3,25 5025.05 4,91 1.46E-10 
SSH 1032.30 4208.90 143.03 1,49 4988.59 1,56 1.16E-09 
Chla 1018.80 4084.50 124.46 1,30 4977.03 1,59 0.003301 
EKE 1015.90 4027.40 57.02 0,59 4965.26 0,16 0.001938 
D20 1012.50 3970.60 56.80 0,59 4953.86 16,82 0.003361 
R-sq.(adj)=0.533   Deviance explained=58.6% 
Deviance explained by Spatial Variable 24.62%, Temporal Variable 58.58%, Environmental Variable 16.79% 

 
 
 

Table 3. Percent contributions and permutation importance values of environmental variables for ordinary and hotspot habitat 
suitability in MaxEnt model. 

Environmental            
variable 

Ordinary habitat suitability Hotspot habitat suitability 
Percent contribution Permutation importance Percent contribution Permutation importance 

SST 42.1 19.5 34.8 7.8 
EKE 39.5 30.1 55.5 51.6 
SSH 8.6 36.9 6.5 31.9 
SSS 3.4 4.8 0.4 0 
Chla 3.3 0.2 0.7 1.2 
D20 3 6.1 1.2 4.4 
MLD 0.1 2.4 1 3.1 
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Figure 2. Generalized additive model (GAM) plots of the effects of oceanographic characteristics associated with skipjack tuna 
(SKJ) catch per unit effort (CPUE). Black and dashed lines represent fitted GAM function and 95% confidence interval, respectively. 
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the Oman Sea and tropical areas between 5°S and 5°N 
in the Indian Ocean. Our GAM determined that temporal 
(month) and spatial (latitude) variables were 
responsible for most of the variance in SKJ CPUE; SSS, 
MLD, SSH, and SSC were the most important 
multisatellite-measured environmental variables in the 
model (Table 2). The MaxEnt model revealed high 
habitat suitability in tropical areas between 5°S and 5°N 
and hotspot habitat suitability in a tight zone between 
2°S and 2°N. Spatial and temporal variables strongly 
affect fishing location, habitat suitability (Vayghan et al., 
2020b; Vayghan et al., 2018), and CPUE standardization 
(Maunder and Punt 2004; Su et al., 2008). In this study, 
SST, EKE, and SSH strongly contributed to SKJ habitat 
suitability. SST is widely considered a key predictor of 
CPUE fluctuations for tuna catches (Dunn 2006; Khan et 
al., 2020; Lan et al., 2018; Lee et al., 2019; Nieto et al., 
2017; Vayghan et al., 2020a) because of its limiting 
effect on distribution; moreover; migration is motivated 
by food richness, which is mainly promoted by SSC and 
optimal SST (Vayghan et al., 2018; Mugo et al., 2010, 
2020b; Mugo and Saitoh 2020a; Mondal et al., 2021). 
SST also affects spatial and temporal differences in the 
reproductive traits of SKJ by influencing physiological 
processes and food availability (Ashida 2020). In 
addition, the distribution, migration, and catchability of 

tuna may be closely associated with different oceanic 
fronts and eddies (Hsu et al., 2021; Lee et al., 2019; 
Mugo et al., 2020b; Zainuddin et al., 2008). SKJ habitat 
suitability might be amplified by mixture of the SST and 
SSC, initiating convergent oceanic fronts, where 
vertically well-mixed, cool, and highly productive 
surface waters settle beneath warm, stratified, and less 
productive waters, resulting in highly productive and 
suitable habitats for tuna schools (Lee et al., 2019; 
Polovina et al., 2001; Vayghan et al., 2020a). Polovina et 
al. (2001) reported that a contour level of 20°C isotherm 
and 0.2 mg m−3 isopleth plus vertical mixing of water 
stimulated higher primary production in surface waters, 
thereby resulting in higher tuna CPUE. Indeed, SSC and 
SST fronts are used to track hotspots of pelagic 
productivity to detect areas that could serve as tuna 
feeding habitats (Cai et al., 2020; Druon et al., 2017; Lee 
et al., 2020). Overall, SKJ prefer warm water, and the 
mechanisms by which they forage within warm waters 
along productive thermal and chlorophyll-a fronts have 
been verified in previous studies (Hsu et al., 2021; 
Kiyofuji et al., 2019; Saitoh et al., 1986). High SSS induces 
oligotrophic conditions and results in less favorable 
primary conditions, which are associated with 
unsuitable feeding grounds for SKJ in tropical waters 
(Coletto et al., 2019). In the present study, the suitable 

 

Figure 3. Skipjack tuna (a) ordinary habitat suitability and (b) hotspot habitat suitability associated with environmental variables 
in the MaxEnt model. 

 

 

 

Figure 4. Receiver operating characteristic (ROC) curve for SKJ (a) ordinary habitat suitability and (b) hotspot habitat suitability 
associated with environmental variables in the MaxEnt model. 
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and unsuitable ranges of SSS were 34.5 to 35.5 PSU and 
35.5 PSU, respectively (Figure 2), which is in line with 
previous research (Coletto et al., 2019; Hsu et al., 2021). 

Water mixing occurs in several oceans and affects 
water oxygen concentration and productivity by 
bringing minerals from the depths to surface water, 
thereby increasing prey availability. The mixed layer 
above the thermocline is a favorable habitat for SKJ 
(Druon et al., 2017; Mugo et al., 2010); however, this 
does not directly affect SKJ fishing activities (Hsu et al., 
2021). MLD is formed by the action of water mass mixing 
induced by the potential energy of wind stress and heat 
exchange at the air–sea interface (Kara et al., 2003). 
Furthermore, MLD is correlated with the SSH variation 
because SST cooling may cause convection, which 
enlarges MLD and reduces SSH (de Boyer Montégut et 
al., 2004). In this study, the MaxEnt habitat suitability 
model revealed the role of ocean currents (EKE and SSH) 
in SKJ distribution in the Indian Ocean. In the Pacific 
Ocean, SKJ distribution and movement is influenced by 
dominant currents, as indicated by SSH and EKE (Mugo 
et al., 2020b; Zainuddin et al., 2006). It’s also confirmed 
that higher SSH values influence the suitability of 
habitats for SKJ in the western Pacific Ocean (Hsu et al., 
2021). Through the interpretation of SSH data, the edges 
of large warm core eddies, which are suitable fishing 
grounds for SKJ, are easily detectible (Nihira, 1996). The 
role of currents in producing favorable habitats for tuna 
species (Dunn & Curnick, 2019) and other fish (Vayghan, 
et al., 2016a; Vayghan et al., 2013) has also been 
explored. Meanwhile, the CPUE and tuna catches may 
be affected by climate variability in the dynamic ocean, 
which must be considered to improve the precision of 
tuna distribution modeling (Yen et al., 2012; Kumar et 
al., 2014; Lan et al., 2018; Sculley & Brodziak, 2020; Yen 
and Lu, 2016). Overall, SST, SSH, EKE, and SSC values 
determined through multisatellite remote sensing are 
essential to predicting distribution patterns and 
variation in the abundance of tuna and tuna-like species 
in the Indian Ocean. Indeed, spatial and temporal 
variables strongly affect the volume of tuna caught by 
Iranian purse seiners. To further elucidate SKJ 
distribution, ensemble modeling conducted in addition 
to inter- and intra-annual studies of habitat changes 
may be appropriate as a next step, and GAMs have 
exhibited consistently high performance in ensemble 
modeling (Alabia et al., 2016; Mugo & Saitoh, 2020). In 
addition, we need to keep in the mind that, fishery-
derived data are subject to various biases associated 

with fisherfolk behavior, fishery instruments, and 
sampling effort distribution (Hsu et al., 2021), which 
may be influenced by weather considerations.  

In conclusion, this study employed multisatellite 
remote sensing data and spatial and temporal data as 
predictor variables in SKJ distribution modeling by 
Iranian purse seiner in the Indian Ocean. Temporal and 
spatial variables had a strong effect, and SST, EKE, and 
SSH were key predictors in hotspot habitat suitability 
modeling of SKJ in the Indian Ocean. However, other 

potential effects of climate change, inter- and intra-
annual fluctuations in catch, and effort-based biases 
must be considered to further elucidate SKJ distribution. 
Overall, the use of diverse datasets combination and 
tools such as satellite datasets and habitat modeling in 
fisheries oceanography can advance our knowledge of 
pelagic hotspots, thereby enabling more accurate 
suitable habitat zone predictions and more effective 
stock management. 
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