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Abstract 
 
The immune system of all jawed vertebrates is composed of two major subsystems, 
the innate (non-specific) and adaptive (specific) immune system. The innate immune 
system is the first to respond to infectious agents; however, it does not provide long-
lasting protection. The adaptive immune system is activated later and responds to 
pathogens with specificity and memory. The main components of the adaptive 
immune system, including T cell receptors (TCRs), major histocompatibility complex 
(MHC), immunoglobulins (Igs), and recombination-activating gene (RAG) arose in the 
first jawed fish (cartilaginous and teleost fish). This review explores and discusses 
components of the adaptive immune system in teleost fish and recent developments 
in comparative immunology. Similar to mammals, the adaptive immune system in 
teleost fish is divided into two components: cellular-mediated responses and humoral-
mediated responses. T cells, the principal elements of cellular-mediated adaptive 
immune responses, differentiate into effector helper T (Th) cells or effector cytotoxic 
T cells (CTLs). The central elements involved in the differentiation of Th subsets in 
mammals, cytokines and master transcription factors, have also been identified in 
teleost fish. In addition, each subset of Th cells, defined with a particular cytokine to 
control the immune responses, has been described in teleost fish. Similar to mammals, 
CTLs contribute to cellular cytotoxicity in teleost fish. B cells are central players in 
humoral-mediated adaptive immunity by producing opsonizing, neutralizing and 
complement-binding antibodies and inducing antibody-dependent cellular 
cytotoxicity (ADCC). Three classes of antibodies named IgM, IgD, and IgT/Z have been 
characterized in teleost fish. The presence of an adaptive immune system and 
consequent immune memory in teleost fish allows vaccination, the most appropriate 
method for disease control in aquaculture. Immunological studies in fish provide a 
comprehensive assessment of the fish immune system, which is crucial for 
understanding the evolution of the mammalian immune system. 
  

 

Introduction 
 

All jawed vertebrates, including cartilaginous and 
teleost (bony) fish, share essential fundamentals of the 
immune system, consisting of two main parts: innate 
(non-specific) and adaptive (specific) immune 
responses. Innate immunity, the first line of the defense 

system, recognizes pathogens in a non-specific manner 
and creates a fast reaction to eliminate the microbes, 
but does not provide long-term protection (Turvey & 
Broide, 2010). If the innate immune system is 
insufficient to clear the infectious agents, adaptive 
immunity is activated by non-specific immunity and 
interferes with pathogens by reacting with specificity 
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and long-lasting protection (memory) (Rauta et al., 
2012). The adaptive immune system is composed of 
highly specialized cells, T- and B-lymphocytes, and 
proteins that destroy and inhibit the growth of invaders 
(Spiering, 2015). In contrast to innate immunity, 
adaptive immune responses rely on the highly diverse 
antigen-specific receptors expressed on T- and B-cells by 
a few hundred germ-line-encoded gene elements that 
are assembled by somatic hypermutation and 
recombination mechanisms of the variable (V), diversity 
(D), and joining (J) gene segments (Chaplin, 2010; Litman 
et al., 2010; Tonegawa, 1983). Therefore, the adaptive 
immune system possesses exquisite specificity for many 
different pathogens. Another key property of adaptive 
immunity is memory, as the adaptive immune system 
generates memory cells that provide long-lived specific 
immunity, thus playing a crucial role in protection 
against recurrent infections with a quick and efficient 
response to the same pathogens (Tangye & Tarlinton, 
2009). 

Cartilaginous and teleost (bony) fish are the 
earliest vertebrate group containing basic principles of 
immunity similar to mammals, despite certain 
differences between them. Although teleost fish include 
approximately 50% of all vertebrate species, most of the 
studies in fish immunology have been defined over the 
last decades (Volff, 2005). Previously, we highlighted 
recent knowledge on the innate immune responses and 
antigen-presenting cells (APCs) in teleost fish (Kordon et 
al., 2018). In this review, we describe the major 
components of the adaptive immune system in teleost 
fish.      
 
Adaptive Immunity in Fish 
 

The major specific components of the adaptive 
immune system, such as T cell receptors (TCRs), the 
major histocompatibility complex (MHC), 
immunoglobulins (Igs), and the recombination-
activating gene (RAG), appeared roughly 450-500 million 
years ago in the first jawed fish (cartilaginous and teleost 
fish) (Table 1) (Brazeau & Friedman, 2015; Flajnik & 
Kasahara, 2010). Like in mammals, adaptive immunity in 
teleost fish is divided into two main components: 
cellular and humoral responses (Figure 1) (Biller-
Takahashi J. D. & C., 2014). T cells, key elements of 
cellular adaptive immunity, mature in the thymus and 
differentiate into effector cells, including cytotoxic T 
cells (CTLs) or helper T (Th) cells (Nakanishi et al., 2015). 
Although B cells, key elements of humoral adaptive 
immunity, are derived from bone marrow in mammals, 
they are produced in the anterior kidney of teleost fish 
and differentiate into plasma cells that produce 
antibodies (Carsetti, 2000; Zwollo et al., 2005). 
Antibodies can be present in two different forms: a 
soluble form, known as immunoglobulins (Igs), and a 
membrane-bound form, known as B cell receptor (BCR) 
(Smith et al., 2019).         

The BCR and TCR, expressed on B and T cells, are 
antigen-specific receptors formed by V(D)J 
recombination and somatic hypermutation (Nemazee, 
2000). Rearrangement of V(D)J genes in different 
combinations generates a wide-range diversity of 
antigen-receptor specificities (Carmona et al., 2016). 
Proteins encoded by recombination-activating genes 
(RAG1 and RAG2) mediate V(D)J gene rearrangement by 
recognition of recombination signal sequences (RSSs) 
and cleavage of target DNA (Carmona & Schatz, 2017; 
Fugmann, 2001; Schatz et al., 1989). V(D)J gene 
segments are present in teleost fish, such as zebrafish, 
rainbow trout, and fugu (Mashoof & Criscitiello, 2016). 
In addition, the expression of RAG1 and RAG2 genes 
have been identified in teleost fish, and the V(D)J gene 
rearrangement in teleost fish is dependent on RAG 
proteins (Dickerson & Findly, 2017; Greenhalgh & 
Steiner, 1995; Lee et al., 2014; Willett et al., 1997). 
Moreover, somatic hypermutation in mammals is 
initiated by an enzyme, activation-induced cytidine 
deaminase (AID), that is also expressed in teleost fish 
(Barreto et al., 2005). In addition to the formation of 
TCRs and BCRs, these mechanisms induce an irreversible 
change in the DNA of each cell, and the progenies of 
these cells inherit the genes that encode the same 
receptor specificity, including memory T and B cells that 
provide long-lived specific immunity (Firdaus-Nawi & 
Zamri-Saad, 2016).   

In addition to antigen specificity, immunological 
memory is defined as the fundamental feature of the 
adaptive immune system. The majority of specific 
immune cells die after clearance of the invading 
pathogens, but a small percentage of cells give rise to 
long-lived memory cells that mediate a rapid and 
protective immune response against previously 
encountered pathogens (Pennock et al., 2013; 
Youngblood et al., 2017). Effective immunization relies 
on the combination of antigen specificity and memory in 
adaptive immunity. Like mammals, memory T and B cells 
have been identified in teleost fish (Scapigliati et al., 
2018). The proliferation of memory T cells has been 
described in immunized carp by IL-10 modulation 
(Piazzon et al., 2015).   
 
Cell-Mediated Responses in Adaptive Immunity 
  

T cells play a fundamental role in cell-mediated 
responses of adaptive immunity by either involving the 
regulation of other leukocytes functions or directly 
killing infected host cells. T cells are developed in the 
thymus; therefore, they are also called thymocytes. The 
transcription factors for T cell development in teleost 
fish, such as ikaros (expressed by early T-cells) and lck 
(expressed later in development) seem to be similar in 
mammals (Willett et al., 2001). In addition to molecular 
mechanisms, cellular mechanisms of T cell development 
are conserved in jawed vertebrates (Boehm et al., 2012; 
Boehm & Swann, 2014; Hirano et al., 2011; Langenau & 
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Zon, 2005). Recently, the development of T cells in 
teleost fish was comprehensively reviewed elsewhere 
(Bajoghli et al., 2019). Mature T-cells are present in 
lymphoid tissues of teleost fish, such as thymus, kidney, 
spleen, and mucosa-associated lymphoid tissues, 
including the intestine, skin, and gills (Nakanishi et al., 
2015). 

All T cells possess a TCR, formed by RAG-mediated 
V(D)J gene rearrangement and recognize specific 
antigens. In mammals, TCR is a type I transmembrane 
glycoprotein with a short cytoplasmic tail and is 
associated with the CD3 complex, a transmembrane 
protein complex with an intracellular signaling domain 
(immunoreceptor tyrosine-based activation motif 
(ITAM)), which forms the TCR:CD3 complex (Birnbaum 
et al., 2014; Love & Hayes, 2010). The structure of the 
TCR:CD3 complex is conserved between mammals and 
teleost fish (Castro et al., 2011; Øvergård et al., 2009; 
Shang et al., 2008). Moreover, T cells in mammals are 

present mainly in two sublineages based on the nature 

of heterodimeric receptor chains with TCR: -TCR or 

-TCR (Smith et al., 2019). Most of the T cells express 

-TCR found in blood and lymphoid organs, whereas 

-T cells represent a small fraction of total T cell 
population in mammals (~5 %) (Carding & Egan, 2002; 
Janeway et al., 1988). Similar to mammals, TCR genes 
encode the TCR α, β, γ, and δ chains in teleost fish, such 
as channel catfish, zebrafish, and Atlantic salmon (Bilal 
et al., 2018; Castro et al., 2011; Fischer et al., 2002; Haire 
et al., 2000; Hordvik et al., 2004; Nam et al., 2003; 

Wilson et al., 1998). Also, the -T cells constitute 7-20% 
of total lymphocytes in blood and lymphoid tissues of 
zebrafish (Wan et al., 2017).  

Although -T cells recognize antigens directly, -
T cells recognize peptides of antigens bound to major 
histocompatibility complex (MHC) molecules 

(Konigshofer & Chien, 2006). The -T cells in mammals 
are further divided into two major populations based on 

 

Figure 1. The components of adaptive immunity in teleost (bony) fish. The adaptive immune system of teleost fish consists of two 
major components: 1) Cell-mediated responses, and 2) Humoral responses. 

 
 
 
Table 1. Comparative assessment of general adaptive immune components between teleost fish and mammals 

 Teleost (Bony) Fish Mammals 

T and B cells + + 
BCR + + 
TCR + + 
Mechanism of Diversity V(D)J recombination V(D)J recombination 
RAG genes + + 
AID + + 
SHM + + 
Germinal Center - + 
CSR - + 
Ig Isotypes IgM, IgD, and IgT/Z IgM, IgD, IgG, IgE, and IgA 

 

Adaptive Immunity

Cell-mediated Responses Humoral Responses

•T cells:
-CTLs
-Th cells

•B cells:
-Plasma cells

•Antibodies:
-IgM
-IgD
-IgT/Z
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their function, cytotoxic CD8+ T cells (CTLs) and helper 
CD4+ T (Th) cells. CD8+ T cells are activated by peptides 
derived from intracellular antigens and presented by 
MHC class I molecules, and their function is to kill 
infected host cells. Helper CD4+ T cells are stimulated by 
peptides derived from extracellular antigens and 
presented by MHC class II molecules, and they regulate 
the responses of other leukocytes (Andersen et al., 
2006; Banchereau & Steinman, 1998; Kordon et al., 
2018). The functional roles of both T cells and T cell-
related molecules, CD4, CD8, MHC class I and II, have 
been described in teleost fish (Fischer et al., 2013; 
Koppang et al., 2010; Nakanishi et al., 2015; Hideaki 
Toda, Yasutaka Saito, et al., 2011).  
 
Major Histocompatibility Complex and Activation of 
Naïve T Cells 
 

Major histocompatibility complex (MHC) class I 
and II molecules play a pivotal role in adaptive 
immunity. MHC class I molecules are composed of two 

domains (1 and 2), forming antigen binding platform, 

and one membrane-spanning domain (3). The 

microglobulin domain (2) is bound non-covalently to 
the membrane-spanning domain (Chen et al., 2010; 
Chen et al., 2017). On the other hand, the binding region 

of MHC class II molecules are formed by 1 and 1 

domains, and two membrane-spanning domains (2 

and 2) are present in MHC class II molecule (Chen et 
al., 2010; Chen et al., 2017; Yamaguchi & Dijkstra, 2019). 
Although both MHC class I and II genes were described 
in most teleost fish and are conserved in jawed 
vertebrates, some teleost fish, such as Atlantic cod lack 
MHC class II genes (Smith et al., 2019; Star et al., 2011). 
However, more genes-related to MHC class I molecules 
were identified in Atlantic cod to compensate for the 
absence of MHC class II counterparts compared to other 
teleost fish (Smith et al., 2019; Star & Jentoft, 2012; Star 
et al., 2011). Also, the heterodimer complexes and the 
conserved structure for peptide-ligand binding of MHC 
molecules in teleost fish are similar to those found in 
mammals (Smith et al., 2019; Yamaguchi & Dijkstra, 
2019).  

In mammals, MHC class I molecule is expressed by 
all nucleated cells and presents the peptides from 
intracellular antigens to CD8+ T cells (Cytotoxic T cells) 
(Hewitt, 2003). However, MHC class II molecule presents 
the peptides processed from 
endocytosed/phagocytosed antigens (extracellular 
antigens) on only professional APCs, dendritic cells, 
macrophages, and B cells to CD4+ T cells (helper T cells) 
(Cho & Roche, 2013). Similar to mammals, MHC class II 
molecules are expressed by all professional APCs of 
teleost fish (Yamaguchi & Dijkstra, 2019)(ref). However, 
MHC class I molecules are ubiquitously expressed and 
detected in multiple tissues, including spleen and 
anterior kidney (Grimholt et al., 2002; Smith et al., 
2019). Also, the roles of teleost MHC class I and II 
molecules are similar to those in mammals. For 

example, upon antigen stimulation, the expression of 
both MHC class I and II genes were upregulated in 
teleost fish similarly to mammals (Scharsack et al., 
2007). Also, the elevated expression of MHC class I and 
II genes increased the survival and resistance of Atlantic 
salmon in Aeromonas salmonicida infection (Kjøglum et 
al., 2008; Smith et al., 2019). Furthermore, increases in 
expression of MHC class II and CD4 genes correlated 
with enhanced adaptive immune responses to 
Edwardsiella ictaluri (E. ictaluri) live attenuated vaccine 
strains in channel catfish lymphoid organs (Kordon, 
Abdelhamed, et al., 2019; Kordon et al., 2021). 

In addition, the interaction between TCR and the 
MHC: peptide complex on APCs lack enough signal to 
activate fully naïve T cells in mammals. Therefore the 
priming of T cells requires the combination of three 
different signals delivered in sequence: 1) antigen 
recognition (TCR:MHC), 2) costimulation, and 3) 
cytokines (Figure 2) (Sckisel et al., 2015). The co-
stimulatory signal is generated by the interaction of a 
co-stimulatory factor, CD28, expressed on T cells and 
B7.1 (CD80) and B7.2 (CD86) ligands found on APC. As a 
third signal, cytokines secreted by APCs determine the 
differentiation of activated T cell into a particular 
effector T cell subset (Muñoz-Wolf & Lavelle, 2018; Nace 
et al., 2012). Similar to mammals, co-stimulatory 
molecules (CD28, B7.1, and B7.2) have been identified in 
several teleost fish, such as rainbow trout and zebrafish 
(Bernard et al., 2006; Hansen et al., 2009; Sugamata et 
al., 2009). Cytokines for T cell differentiation have been 
determined in teleost fish, similar to mammals (Ashfaq 
et al., 2019).  
 
Effector CD4+ T helper Cells 
 

CD4+ T cells accomplish numerous crucial 
functions in mammals by stimulating cell-mediated 
immunity of macrophages, granulocytes (neutrophils, 
eosinophils, and basophils), CD8+ T cells, and B cells to 
produce antibodies through the production of several 
cytokines (Reiner, 2007). Similar functions of CD4+ T 
cells have been described in teleost fish: in particular, 
the effective bacterial killing triggered by CD4+ T cells in 
ginbuna carp (Nayak & Nakanishi, 2013). Moreover, the 
upregulation of cytokine, IL-12, related to CD4+ T cells 
was documented in fugu during extracellular parasitic 
infection (Yoshiura et al., 2003). Although the 
mammalian CD4 molecule contains four Ig-like domains 
(D1-D4), teleost fish possess two CD4 genes: CD4-1 
containing four Ig-like domains and CD4-2 containing 
two or three Ig-like domains (Ashfaq et al., 2019; 
Maddon et al., 1987). Recently, we showed the 
increased expression of both CD4-1 and CD4-2 genes in 
the lymphoid tissues of channel catfish infected with E. 
ictaluri strains (Kordon, Abdelhamed, et al., 2019; 
Kordon et al., 2021). 

Upon activation, the naïve CD4+ T cells 
differentiate into specific subsets named Th1, Th2, Th9, 
Th17, Tfh cells, and Tregs, with each subset defined by a 
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Figure 2. Three signals delivered by APCs to prime naïve T cells. Signal 1 is generated from the interaction between MHC: peptide 
complex and TCR and required for activation of naïve T cells. Signal 2 is a co-stimulatory signal (CD80/CD96:CD28) delivered by 
the same APC for survival and proliferation of the T cell. Signal 3 is a cytokine signal. Cytokines are secreted by APC and other 
innate lymphocytes for differentiation of the T cells into a particular subtype. 
 
 
 

 

Figure 3. Pathogen-induced differentiation of naïve CD4+ T cell into different subsets. Followed by interaction with an APC infected 
with different pathogens (bacteria, viruses, parasites, or fungi), Th cells may differentiate into several effector cell subsets 
depending on the cytokine signal (solid arrows). Each Th type secrets a unique set of cytokines (dashed arrows) and promotes the 
pathogen-specific immune responses. 
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particular cytokine profile control over the immune 
responses (Figure 3) (Annunziato & Romagnani, 2009; 
Dardalhon et al., 2008; Saito et al., 2010; Wan & Flavell, 
2009). In mammals, APCs activated through the pattern 
recognition receptors produce large amounts of 
interleukin 12 (IL-12) that induce natural killer cells (NK) 

to secrete interferon  (IFN-thus initiating Th1 
differentiation (Luckheeram et al., 2012; Trinchieri et al., 
2003). Also, several transcription factors, including the 
T-box transcription factor (T-bet), signal the transducer 
and activator of transcription-1 (STAT-1), and STAT-4 are 
involved in full differentiation of the Th1 cells (Ashfaq et 
al., 2019). In teleost fish, multiple isoforms of IL-12 and 

IFN-are key cytokines for Th1 differentiation 
(Nascimento et al., 2007; Yoshiura et al., 2003). In 
addition, the T-bet gene has been characterized in 
teleost fish, such as zebrafish, rainbow trout, and grass 
carp, and T-bet is considered to be a master 
transcription factor for both fish and mammals (S. Mitra 
et al., 2010; Wang et al., 2013; Wang, Holland, et al., 
2010). The Th1 cells mount an immune response to 

intracellular pathogens by the release of IFN-that 
activates macrophages and enhances their phagocytic 
activity (Luckheeram et al., 2012). The Th1 cells in 

teleost fish generate one or two forms of IFN-IFN-

and IFN-rel (Smith et al., 2019). In E. ictaluri 
infection, we reported elevated expression levels of the 

IFN-gene, correlated with CD4-1 and CD4-2 genes’ 
elevated expression in the lymphoid organs of channel 
catfish (Kordon, Abdelhamed, et al., 2019; Kordon et al., 
2021). 

The IL-2 and IL-4 are critical cytokines responsible 
for Th2 differentiation through the regulation of 
transcription factors containing STAT-5, STAT-6, and 
GATA-3 (Ashfaq et al., 2019; Zhu et al., 2001). Similarly, 
two genes of both IL-2 and IL-4 have been identified in 
teleost fish (Díaz-Rosales et al., 2009; Li et al., 2007). In 
addition to key cytokines, the master transcription 
factor GATA-3 has been described in distinct fish 
species, including zebrafish, salmonids, and grass carp 
(Kumari et al., 2009; Neave et al., 1995; Wang et al., 
2013). The Th2 cells are effective against extracellular 
parasites, inducing the degranulation of cells and mast 
cells, and the production of antibodies by producing key 
cytokines including IL-4, IL-5, IL-9, IL-10, IL-13 (Walker & 
McKenzie, 2018). Similar to mammals, Th2-related 
immune responses were detected in fish gills and skin 
with a higher expression of IL-4/13A and GATA-3 against 
parasites (Takizawa, Koppang, et al., 2011).  

Th17 cells, another Th cell lineage, are involved in 
the elimination of extracellular pathogens, including 
bacteria and fungi. The main cytokines IL-6, IL-21, IL-23, 

and transforming growth factor-beta (TGF-) drive the 
differentiation of Th17 cells, along with regulators 
including retinoic acid receptor-related orphan 
receptors gamma (RORγ) and alpha (RORα) and the 
signal transducer and activator of transcription 3 (STAT-
3) (Zhu et al., 2010). The major elements required for 

mammalian Th17 cell segregation pathway are also 
found in teleost fish, containing signature cytokines (IL-

6, IL-21, IL-23, and TGF-) and the master transcription 
factor RORγ (Ashfaq et al., 2019). Th17 cells in mammals 
produce IL-17 (IL-17A, IL-17F), IL-21, and IL-22, which 
mediate inflammatory responses, inducing the 
recruitment of inflammatory cells, such as neutrophils 
to site of infection, and the production of pro-
inflammatory cytokines, such as IL-1, IL-6, and 

TNF(Luckheeram et al., 2012). Multiple isoforms of IL-
17A/F genes (IL-17A/F1, IL-17A/F2, and IL-17A/F3) have 
been characterized in teleost fish, such as zebrafish, 
rainbow trout, and fugu (Gunimaladevi et al., 2006; 
Kono et al., 2008; Monte et al., 2013). Additionally, IL-
17A/F2 stimulated antibacterial defenses by inducing 
the expression of antibacterial peptides and pro-
inflammatory cytokines, IL-6 and IL-8, in rainbow trout 
(Secombes et al., 2011). Moreover, Th17-like immune 
response has been identified in zebrafish mucosal 
tissues after live attenuated Vibrio anguillarum infection 
(Zhang et al., 2014). 

Regulatory T cells (Treg) regulate the maintenance 
of immunologic tolerance to self and foreign antigens. 

The key cytokines, TGF- and IL-10, play a vital role in 
the differentiation of Treg cells through the main 
transcription factor, forkhead box P3 (FoxP3) (Yuan & 
Malek, 2012). Similar to mammals, distinct isoforms of 

TGF- and IL-10-type genes are also present in fish 
(Ashfaq et al., 2019; Zhan & Jimmy, 2000). In addition to 
key cytokines, the master regulator FoxP3 has been 
identified in teleost fish (Suman Mitra et al., 2010; 
Wang, Monte, et al., 2010). Mammalian Tregs produce 

the same effector cytokines, TGF- and IL-10, that 
suppress pro-inflammatory responses after the 
clearance of pathogens to prevent tissue damage, and 
maintain peripheral tolerance (Ouyang et al., 2011). The 
IL-10 produced by Tregs has been identified in most 
teleost fish species, and its expression was highly 
elevated at 2-5 weeks post-infection (Piazzon et al., 
2017). Also, Tregs in teleost fish preserve peripheral 
tolerance in the skin of rainbow trout (Leal et al., 2016). 

In mammals, follicular helper T cells (Tfh) regulate 
the proliferation of B cells and Ig class switching, 
especially in the germinal centers of lymphoid tissues. 
The major cytokines, IL-6 and IL-21, and transcription 
factor Bcl6 are involved in differentiation process of Tfh 
cells (Nurieva & Chung, 2010). The effector Tfh cells 

secrete IL-6, IL-21, and TGF- to perform their function 
(Srivastava et al., 2018). In contrast to mammals, teleost 
fish lack germinal centers and Ig isotype switching. 
Recently, Th9 cells were defined as a subgroup of CD4+ 
T cells contributing to immune responses against 
intestinal worms and autoimmune diseases, including 
multiple sclerosis (MS), inflammatory bowel disease 
(IBD), rheumatoid arthritis (RA), systemic lupus 
erythematosus (SLE), psoriasis, and cancer, and they 
exhibit potent anti-tumor properties (Chen et al., 2020; 

Srivastava et al., 2018). The cytokines TGF- and IL-4 and 
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master transcriptional factor STAT-6 are responsible for 
Th9 cell differentiation (Chen et al., 2020). The 
significant cytokine IL-9 is secreted by Th9 cells 
(Srivastava et al., 2018). On the other hand, two 
subpopulations of CD4+ T cells, Tfh and Th9 cells, have 
not yet been detected in teleost fish species. 
  
 
Effector CD8+ Cytotoxic T Cells 
 

CD8+ T cells play a crucial role in immune defense 
against intracellular pathogens, especially virus 
infection. IL-12 released from the APC is the key cytokine 
driving the differentiation of mammalian CD8+ T cells 
through the master transcription regulators, including T-
bet and eomesodermin (Eomes) (Ahuja et al., 2007; 
Intlekofer et al., 2005). In teleosts, homologues of IL-12 
subunits have been reported (Yoshiura et al., 2003). 
Similarly, T-bet has been characterized in many teleost 
fish species, and gene expression analysis showed that 
T-bet triggers the activation of CD8+ T cells. Also, Eomes 
has been identified in teleost fish, such as zebrafish, 
Atlantic salmon, and rainbow trout (Yamaguchi et al., 
2019). Furthermore, the highest level of Eomes 
expression was observed in rainbow trout CD8+ T cells 
(Takizawa et al., 2014). The CD8 molecule in mammals is 

present in two forms: a homodimer of two chains or a 

heterodimer of andchains (Cole & Gao, 2004). Both 

andchains of the CD8 molecule have also been 
described in most species of teleost fish (Forlenza et al., 
2008; Takizawa, Dijkstra, et al., 2011). Furthermore, we 
demonstrated that an intracellular pathogen, E. ictaluri 

strains, induced the upregulation of both CD8 and 

CD8gene expressions in the lymphoid tissues of 
channel catfish (Kordon, Abdelhamed, et al., 2019; 
Kordon et al., 2021).  

Mammalian CD8+ T cells induce the apoptosis of 
infected host cells by two pathways: the secretory and 
non-secretory mechanisms. The secretory pathway is 
characterized by the release of granular toxins, including 
perforin and serine proteases known as granzyme, while 
the non-secretory pathway requires the engagement of 
target-cell death receptors, such as Fas, located on the 
CD8+ T cell surface (Jaime-Sanchez et al., 2020). The 
secretory pathway in teleost fish is similar to that of 
mammals (Figure 4). A perforin-like molecule has been 
identified in multiple teleost species (Hwang et al., 2004; 

Praveen et al., 2004). CD8cells in ginbuna crucian 
carp kill virus-infected cells by using perforin, and 
perforin inhibitor, concanamycin A, inhibited the killing 

function of CD8lymphocytes in channel catfish and 
ginbuna crucian carp (H. Toda et al., 2011; Zhou et al., 
2001). These studies showed that perforin induces a 
similar pathway of killing in teleost fish (Figure 4). In 
addition to perforin, granzyme with a similar structure 
to that of mammals has been identified in teleost fish 
(Figure 4) (Huang et al., 2010; Praveen et al., 2004). The 
granzyme B-lime molecule was involved in the 
cytotoxicity of CD8+ T cells in fish (Hideaki Toda, Takeshi 
Yabu, et al., 2011). Moreover, highly elevated levels of 
granzyme mRNA was detected in CD8+ T cells of ginbuna 
crucian carp in Edwardsiella tarda (E. tarda) infection 
(Matsuura et al., 2014). Granzyme A-like serine protease 
in ginbuna crucian carp contributed cell-mediated 
immunity through cytotoxic activity (Matsuura et al., 
2016). Furthermore, the non-secretory pathway has 
been studied in teleost fish. For instance, the FasL-like 
molecule, apoptosis ligand, has been characterized in 
several teleost species, such as channel catfish, tilapia, 
and gilthead sea bream (Cuesta et al., 2003; Long et al., 
2004; Ma et al., 2014). The FasL-like protein in tilapia 

 
Figure 4. Clearance of infected host cells by effector CD8+ T (Cytotoxic T) cells in teleost fish. Cytotoxic T cells bind by their TCRs 
that recognize peptide: MHC class I complex on the infected host cells (A). Cytotoxic T cells secrete perforin and granzymes, that 
induce the formation of pores and release of cytotoxins in the cytoplasm of infected host cell (B). The infected host cells undergo 
apoptotic cell death, and cytotoxic T cells are detached from infected cells (C).   
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resulted in cytotoxicity to the Hela cells through 
apoptosis (Ma et al., 2014). 

Teleost CD8+ T cells are involved in cell-mediated 
cytotoxicity that control intracellular pathogens. The 

population of CD8cells killed virus-infected target 
cells in fish (Somamoto et al., 2013; Hideaki Toda, 
Takeshi Yabu, et al., 2011; Yamaguchi et al., 2019). 
Increased cytotoxic activity of CD8+ T cells with elevated 

numbers of CD8cells contribute to the elimination of 
E. tarda-infected cells and bacteria in the spleen and 
kidney of fish (Yamasaki et al., 2013). Furthermore, 

adoptive transfer of CD8lymphocytes from carp 
hematopoietic necrosis virus-infected fish to naïve 
recipients provided effective protection in ginbuna 
crucian carp at the latter virus challenge (Somamoto et 
al., 2013). 
 
Humoral-Mediated Responses in Adaptive Immunity 
 

B cells mediate the humoral immunity branch of 
the adaptive immune system by secreting antibodies. 
Antibodies are divided into two groups: secreted soluble 
form, immunoglobulins (Igs) or antibodies, or B cell 
receptors (BCR), membrane-bound form. Mammalian 
Igs are composed of two heavy chains (IgH) and two light 
chains (IgL) that are engaged by disulfide bonds resulting 
in a ‘Y’ shape molecule (Chiu et al., 2019). Both IgH and 
IgL chains are comprised of one variable region, called 
the Fab region (fragment, antigen-binding) that give 
specificity to the antibody for antigen binding, and one 
or more constant domains, called Fc region (fragment, 
crystallizable) that determine the effector functions of 
the antibody (Smith et al., 2019). Antibodies induce the 
neutralization, internalization, and elimination of 
pathogens, as well as antibody-dependent cellular 
cytotoxicity (ADCC) through Fc receptor-bearing 
effector cells (Forthal, 2014; Teillaud, 2001). Antibodies 
also activate a complement cascade that mediates 
internalization of complement-coated pathogens by 
phagocytic cells and lysis of pathogens by membrane 
attack complex formation (Forthal, 2014). The structure 
and function of Igs in teleost fish are similar to those in 
mammals (Mashoof & Criscitiello, 2016). Three classes 

of Igs have been identified in teleost fish: IgM, IgD, and 
IgZ/T (Table 2) (Mashoof & Criscitiello, 2016). 

The BCR in mammals consists of the membrane-

bound antibody associated with the Ig-/Ig-

heterodimer, known as CD79a/b, that is crucial for 
signal transduction because of the presence of ITAM 
domain (Treanor, 2012). Like TCR, antigen specificity of 
BCR and Igs are formed by V(D)J gene rearrangement 
mediated by RAG genes (Nguyen et al., 2016). Similar to 
higher vertebrates, the IgH gene in teleost fish is 
arranged by the configuration of multiple V(D)J gene 
segments, followed by constant (C) segments (V-D-J-C). 
However, the IgL chain is arranged in a repeating set of 
V-J-C segments (Bao et al., 2010; N. Danilova et al., 2005; 
J. Hikima et al., 2011).   

In mammals, bone marrow is the main 
hematopoiesis site that produces B cells. However, 
teleost fish lack bone marrow, and B cells are developed 
in the anterior kidney, the main site of hematopoiesis in 
teleosts. Mammalian mature B cells are found in 
secondary lymphoid tissues, such as spleen and lymph 
nodes. Although lymph nodes are not present in teleost 
fish, mature B cells are found in the spleen and posterior 
kidney of teleost fish (Zwollo et al., 2005). Also, B cells 
are found in distinct tissues, such as the lamina propria 
of intestine and in the epithelium of skin and gill (Salinas, 
2015; Salinas et al., 2011). Upon recognition of an 
antigen, B cells differentiate into short-lived plasma cells 
(SLPC) formed in extra-follicular sites of secondary 
lymphoid tissues, with a life span of 3-5 days, or long-
lived plasma cells (LLPC) formed in germinal centers of 
secondary lymphoid organs, with a life span of several 
months to a lifetime (Nutt et al., 2015). A similar 
differentiation pattern of B cells to plasma cells has been 
described in teleost fish (Ye et al., 2011; Zwollo et al., 
2005). The plasma cells of teleost fish are divided into 
SLPCs formed in the spleen and LLPCs located only in the 
anterior kidney of fish (Kaattari et al., 2005; Ye et al., 
2011).   

The germinal center (GC) is a microenvironment 
where somatic hypermutation and class-switch 
recombination reaction for antibody diversification and 
affinity maturation occur (De Silva & Klein, 2015). 

Table 2. General structure of Ig isotypes in teleost fish 

Ig Isotypes Teleost (Bony) Fish                 Mammals 

IgM 

Tetramer 
No J chain 

Disulfide bonds-associated 
Serum 

Mucosal in the absence of IgT/Z 

Pentamer 
J chain-associated 

Serum 

IgD 
Transmembrane 

Secreted: No V domain 
C domain ranging from 2 to 16 

Monomer 

IgT/Z 

Unique to teleost fish 
Mucosal 

Tetramer in mucosal tissue 
Monomer in serum 

Not present 
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Activation-induced cytidine deaminase (AID) mediates 
somatic hypermutation to increase the affinity of 
antibodies and mediates class-switch recombination to 
generate antibodies with specialized effector functions 
(Leeman-Neill et al., 2018). Hence, long-lived plasma 
cells produce high-affinity class-switched antibodies, 
whereas short-lived cells express low-affinity IgM 
antibodies (Khodadadi et al., 2019). While teleost fish 
lack GCs in immune tissues, melano-macrophage 
centers are formed by numerous macrophages in 
lymphoid tissues, such as the spleen, and have a similar 
function as GCs (Agius & Roberts, 2003). Furthermore, 
the AID enzyme of teleost fish that mediates somatic 
hypermutation and catalyzes class-switch 
recombination in mammalian B cells in vitro was first 
identified in channel catfish (Barreto et al., 2005; Magor, 
2015; Saunders & Magor, 2004). Despite the presence 
of AID in teleost fish, they still lack class-switch 
recombination due to the IgH gene structure, thus 
resulting in low efficient affinity maturation response 
compared to mammals (Wakae et al., 2006). 

Similar to T cells, B cells differentiate into memory 
B cells in GCs of lymphoid tissues after activation by 
antigenic interaction (as discussed in detail in ref. 
(Akkaya et al., 2020). Also, teleost fish have developed 
immunological memory that provides a rapid and 
effective response to a pathogen previously 
encountered. For example, the formation of memory B 
cells in rainbow trout resulted in a faster and larger 
magnitude of secondary response to trinitrophenylated-
keyhole limpet hemocyanin (Arkoosh & Kaattari, 1991). 
In addition, antibody affinity was higher in salmonids 
during the secondary response to the same antigen 
because of memory B cells (Ma et al., 2013). Moreover, 
vaccination with attenuated Viral Hemorrhagic 
Septicemia rhabdovirus (VHSV) induced the generation 
of memory B cells that elevated titers of serum IgM in 
rainbow trout in response to the same antigen 
(Magadan et al., 2018). Therefore, vaccination is a 
prophylactic method to protect teleost fish against 
economically devastating pathogens for several years 
post-immunization due to immunological memory 
(Findly R. C. et al., 2013; Firdaus-Nawi & Zamri-Saad, 
2016). 

In addition to the crucial role of B cells in adaptive 
immunity, two subsets of mammalian B cells, B-1 cells 
and marginal zone (MZ) B cells, contribute to innate 
immunity, including cytokine production, phagocytic 
capability, antigen presentation, and intracellular killing 
(Sunyer, 2013; Zouali & Richard, 2011). Similar to B-1 
and MZ B cells of mammals, B cells in teleost fish are 
capable of phagocytosis and microbial killing of ingested 
bacteria. The phagocytic ability of B cells has been 
described in rainbow trout, and the formation of 
phagolysosome was observed in these fish (Li J et al., 
2006). Moreover, zebrafish B cells showed strong 
phagocytic ability for particulate and soluble antigens 
and could present antigens to T cells like mammalian B 
cells (Zhu et al., 2013). Furthermore, the phagocytic 

capacity of B cells isolated from the anterior kidney and 
peripheral blood was higher than neutrophils in Atlantic 
cod (Øverland et al., 2010). Previously, it was reported 
that large amounts of B cells in catfish blood were 
phagocytic (Esteban et al., 2015). Recently, our research 
group demonstrated both active uptake of E. ictaluri 
strains by anterior kidney B cells in catfish at 30o and 4o 
C and phagosome and/or phagolysosome formation in 
the cytoplasm of B cells (Kordon, Kalindamar, et al., 
2019; Kordon et al., 2020). Also, internalized E. ictaluri 
strains were destroyed by catfish B cells at 30o C, but not 
at 4o C (Kordon et al., 2020). 
 
Immunoglobulin M 
 

IgM is known as the most ancient class of antibody 
found in all jawed vertebrates with unique features 
(Flajnik, 2002). In mammals, secreted IgM is present as 
a pentameric form associated with the joining (J) chain 
(Keyt et al., 2020). Immunoglobulin M, the first 
identified in plasma and the most prevalent in teleost 
fish, is described in two different forms: secreted and 
transmembrane form (Mashoof & Criscitiello, 2016). 
The secreted form of IgM is multimerized into a 
tetrameric form polymerized by interchain disulfide 
bonds due to the absence of J chain (Table 2) (Castro & 
Flajnik, 2014). However, some teleost fish species, such 
as rainbow trout, have monomer IgM in their serum 
(Elcombe et al., 1985; Wilson & Warr, 1992). In rainbow 
trout, the binding affinity of both monomeric and 
tetrameric IgM is similar, but the tetrameric form of IgM 
is more efficient to activate the complement system 
(Elcombe et al., 1985). In addition, the transmembrane 
form of IgM in B cells is one domain shorter than the 
secreted form, due to alternative splicing (Sahoo et al., 
2008). Moreover, IgM, the only isotype in teleost fish, 
has two sub-types identified in Atlantic salmon and 
brown trout (Hordvik et al., 2002). Similar to mammals, 
teleost IgM contributes to both innate and adaptive 
immune responses, including complement activation, 
induced opsonization, lysis of pathogens and mediating 
cellular cytotoxicity through ADCC (Boshra et al., 2004; 
Smith et al., 2019). Also, IgM regulates agglutination for 
phagocytosis that results in the clearance of pathogens 
(Ye et al., 2013). In addition to plasma, IgM was detected 
in mucosal tissues, such as the skin and intestine of fish 
(Peleteiro & Richards, 1988; Zhang Y et al., 2010). 
Immunization induces an elevated titer of IgM in fish 
serum, but results in a weak improvement in affinity 
maturation compared to mammals (Kaattari et al., 2002; 
Ye et al., 2013). Recently, our research team detected 
significantly increased IgM levels in channel catfish 
serum following vaccination with E. ictaluri strains 
(Kordon et al, unpublished observation).   
 
Immunoglobulin D  
 

Immunoglobulin D is the second class of Igs 
identified in fish that shares sequence similarity with IgD 
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in mammals (Wilson M et al., 1997). However, teleost 
fish contain unique features of  IgD due to the many 
forms (from 2 to 16) of IgD constant domains (Table 2) 
(Edholm et al., 2011; Parra et al., 2016; F. Ramirez-
Gomez et al., 2012). In addition, the only 
transmembrane form of IgD has been found in teleost 
fish, with the exception of channel catfish, Japanese 
puffer, and rainbow trout, which have two forms, 
transmembrane and secretory (J.-i. Hikima et al., 2011; 
Francisco Ramirez-Gomez et al., 2012). Secreted IgD 
(which lacks the V domain) binds directly to Fc receptor 
of basophils functioning as a pattern recognition 
receptor. Thus, it can induce inflammatory responses, 
including the production of pro-inflammatory cytokines, 
antimicrobial, opsonizing, and B cell-activating factors 
(Chen et al., 2009; Edholm et al., 2010). Immunoglobulin 
D in teleost fish is mainly found in serum and also 
expressed in the anterior and posterior kidneys, spleen, 
and gill (Bengtén & Wilson, 2015). Furthermore, the 
level of IgD was higher in the gill of rainbow trout 
compared to IgM level (Smith et al., 2019).         
  
Immunoglobulin T/Z 
 

IgT/Z, the only teleost fish-specific Ig, was first 
identified in rainbow trout (IgT) and in zebrafish (IgZ) 
(Table 2) (Nadia Danilova et al., 2005; Hansen et al., 
2005). IgT/Z functions similar to mammalian IgA 
(Mashoof et al., 2014). The IgT/Z level in the gut of 
rainbow trout was much higher (63 times) than that in 
serum, whereas the concentration of IgM in the serum 
was much higher compared to IgT/Z (Zhang Y et al., 
2010). The IgT/Z in the gut of teleost fish contributes to 
immune responses against intestinal parasites and 
bacteria (Zhang Y et al., 2010). For example, the number 
of IgT+ B cells elevated in the gut of rainbow trout after 
parasitic intestinal infection, although the number of 
IgM+ B cells did not change in the same tissue (Zhang Y 
et al., 2010). In addition to IgT+ B cells, the IgT 
concentration was increased in the gut of surviving 
rainbow trout. However, the titer of parasite-specific 
IgM was higher in the sera of surviving animals (Zhang Y 
et al., 2010). Moreover, IgT+ B cells in teleost fish were 
found in skin-associated lymphoid tissue and secrete IgT 
into skin mucus (Xu et al., 2013). IgT is present in fish 
serum as a monomer but has a tetramer form in the gut 
mucus (Zhang Y et al., 2010). Some teleost fish species, 
such as channel catfish, lack IgT; therefore, IgM is the 
main Ig class in both serum and mucosal immunity 
(Findly R. C et al., 2013; Maki & Dickerson, 2003; Zhao et 
al., 2008). 
 
Conclusion 
 

Recent findings in fish immunology show that 
significant progress has been made in the mechanistic 
understanding of fish immune responses. Two branches 
of the fish immune system, innate and adaptive 
immunity, provide important information for 

understanding the evolution of the immune system. 
Studies of fish with new reagents and powerful 
sequencing and knockout procedures will provide a 
valuable framework for assessment of the highly 
complex mammalian adaptive immune responses. In 
addition, the costs of fish infections to aquaculture can 
be overwhelming, making the failure of immunity a 
major risk for commercial fish farming. The presence of 
an adaptive immune system and, consequently, immune 
memory in teleost fish allows vaccination, the most 
appropriate method for disease control in aquaculture. 
In addition to vaccination, different approaches have 
been developed to control infectious diseases in 
aquaculture, such as high-quality diets including 
probiotics, prebiotics, and medicinal plants and 
treatment with antibiotics (Chinabut & Puttinaowarat, 
2005). Furthermore, farm-level biosecurity precautions, 
including egg disinfection, water treatments, clean food, 
traffic control, intense quarantine measures, removal 
and disposal of mortalities, are preventive approaches 
to keep the facility safe before any disease outbreaks 
(Assefa & Abunna, 2018). 
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