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Abstract 
 
Clarias magur, popularly known as magur, is one of the economically important catfish 
species having high aquaculture potential in India due to its efficient food conversion, 
taste, and nutritional benefits. Due to habitat degradation, over exploitation, lack of 
resources, indiscriminate use of agricultural pesticides and introduction of competitor 
exotic species, the wild populations are dwindling day by day. According to IUCN, it is 
listed as endangered species. In the present study, the population genetic structure of 
206 magur samples collected from seven different geographical regions was examined 
using partial mitochondrial D-loop (control region) sequence variation. In total of 17 
haplotypes were observed with high number of private alleles, number of haplotypes 
ranged from 2 to 6 and maximum number of haplotypes was observed in UP 
population. Haplotype diversity and nucleotide diversity ranged from 0.06897 to 
0.76322 and 0.00019 to 0.00208, respectively. Pairwise FST values ranged from 0.01383 
to 0.62069 and highest genetic differentiation was observed between AP and AS 
population. Low genetic diversity and significant population genetic differentiation 
was observed in the present study.  The information generated in the present 
investigation would facilitate formulating appropriate strategy for management, 
conservation, and genetic improvement program of this commercially important 
aquaculture species.  

 

Introduction 
 

The family Clariidae consisted of 16 genera and 116 
species (https://www.fishbase.se) out of 16 genera the 
genus Clarias alone consisted of 57 species (Ferraris, 
2007).  The Indian catfish, Clarias magur is popularly 
known as magur and is widely preferred in South East 
Asian countries due to certain characteristics such as 
nutritional and medicinal values and flesh quality (Majhi 
et al. 2020). Magur is a facultative air-breather, 
commercially important freshwater fish having 
enormous potential as candidate aquaculture species in 
India and adjacent countries due to its high growth rate 
and efficient food conversion (Roy et al., 2019). Magurs 
are naturally inhabitants of stagnant, slow flowing, 

swampy and muddy water bodies often characterized 
by low oxygen content, high carbon and ammonia. 
Magur in wild is distributed in Ganga and Brahmaputra 
river basins of North and Northeast India, Nepal, Bhutan 
and Bangladesh (Ng and Kottelat, 2008; Vishwanath, 
2010).  As per the reports of International Union for 
Conservation of Nature (IUCN), the natural populations 
of C. magur has declined in its natural range and it has 
become endangered species (Vishwanath, 2010). 
Several factors such as over exploitation, climate 
change, pollution, excessive use of pesticides, herbicides 
and inorganic fertilizers in agricultural farms, 
devastation of natural habitat and unregulated 
introduction of alien species such as African catfish 
(Clarias gariepinius), a competitor of C. magur for food 
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and habitat are responsible for dwindling of wild 
populations (Banerjee et al., 2019; Roy et al., 2019). 
Therefore, appropriate conservation strategies need to 
be developed and implemented for sustainable 
production and preservation of natural gene pool of this 
economical important species. Clear understanding of 
gene flow, population genetic differentiation and 
identification of genetically discrete populations are 
essential requirements for effective implementation of 
conservation strategies (Melis et al., 2018). 
Identification of genetically distinct populations, 
quantification of genetic connectivity and assessment of 
gene flow depends on availability of genetic data 
(Ovenden et al., 2016).  

Invariably, molecular genetic markers were used 
for estimation of population genetic parameters in 
plants and animals including fish (Han et al., 2012; Hong 
et al., 2012; Gong et al., 2018; Souza-Shibatta et al., 
2018). Polymerase chain reaction (PCR) based DNA 
markers are advantageous and have been successfully 
employed for estimation of within and between 
population genetic diversity of several aquaculture 
species (Liu and Cordes, 2004). Mitochondrial DNA 
markers are cost effective and easy to develop in 
comparison to microsatellite and single nucleotide 
polymorphism (SNP) markers and can be used efficiently 
for estimation of population genetic parameters 
(Quilang et al., 2007; Fleury et al., 2009). Mitochondrial 
DNA markers have been widely employed for ecological 
studies, estimating genetic diversity indices, population 
genetic characterization, phylogenetics, genetic 
introgression and species and hybrid identification 
(Avise et al., 1986; Ferguson et al., 1995).  

 High mutational rate, small size, maternal 
inheritance and single locus nature of mtDNA sequences 
make them extremely suitable for examining fine 
population structure and other ecological studies (Liu 
and Cordes, 2004; Galtier et al., 2006). Numerous 
mtDNA regions such as control region, ATPase 6/8, COI, 
Cyt b and 16s RNA have been employed for population 
genetic characterization of several fish species (Swain et 
al., 2014; Chan et al., 2016; Langille et al., 2016; Das et 
al., 2017a, b). Existence of genetic diversity in a species 
is essential for ecosystem restoration, and its ability to 
react to environmental changes (Lynch and Conery, 
2003; Reed, 2004; Reusch et al., 2005; Zhang et al., 
2020). Several factors such as population structure, 
population bottlenecks, natural selection, life cycles, 
and mating systems shapes the genetic diversity of a 
species (Cherry and Wakeley, 2003; Hoban et al., 2016). 
Genetic diversity is essential for long term existence and 
genetic improvement of any species. Nevertheless, the 
molecular genetic data available for an aquaculture 
important species like magur is not comprehensive. Few 
population genetic studies have been undertaken to 
examine the genetic structure of Indian magur 
populations (Khedkar et al., 2010; Khedkar et al., 2016; 
Jousy et al., 2017; Tiknaik et al., 2020). However, none 
of the studies encompasses magur populations across 

India. Therefore, our aim is to further explore the 
genetic back ground of C. magur populations. We have 
analyzed the population genetic structure of magur 
originating from seven wild populations, specifically 
from Eastern, North-Eastern, Northern and parts of 
Southern India utilizing partial D-loop (control region) 
sequences of mitochondrial DNA. The result of the 
present study will facilitate to formulate appropriate 
conservation strategy and sustainable production of this 
commercially important species. 
 

Materials and Methods 
 

Sample Collection and Sequencing 
 

The Indian Catfish C. magur is widely distributed in 
India. In the present study, prime importance was given 
to collect wild populations not included in the previous 
studies and magur samples were collected with the help 
of local fishermen and/or from local fish market. All 
handling of fish was carried out following the guidelines 
for control and supervision of experiments on animals 
by the Government of India and approved by 
Institutional Animal Ethics Committee (AEC) of ICAR-
CIFA. A total of 206 magur specimens from seven 
different geographical regions Vijayawada, Andhra 
Pradesh (AP), Bhubaneswar, Odisha (OD), Guwahati, 
Assam (AS), Raipur, Chhattisgarh (CG), Kolkata, West 
Bengal (WB), Patna, Bihar (BR) and Varanasi, Uttar 
Pradesh (UP)) of India (Figure 1 and Table 1) were 
sampled. Fin tissues were collected and preserved in 95 
% ethanol at -20°C till further use. High molecular weight 
gDNA was extracted using standard phenol-chloroform 
method (Sambrook et al., 1989). A pair of species 
specific primer encompassing the variable region of D-
loop (CR) was designed from the complete mtDNA 
sequence available in the NCBI database. Partial D-loop 
region of Clarias magur was amplified with designed 
primers (Forward F: 5’-CTTCCTAGCGCCAGAAAAGA-3’ 
and Reverse R1: 5’- TCAATCGAGCCTTACCTGGTTG-3’). 
Polymerase chain reaction was performed in 25 µl 
reaction volume containing 2.5 µl of 10 X PCR buffer, 200 
µM of dNTP mix, 1 µl (10 pmol) of each primer, 2 µl 
(25ng/ µl) of template DNA and 0.25 U of Taq DNA 
polymerase. The PCR was performed on a GenAmp PCR 
System (Applied Biosystems Inc., Foster City, CA, USA) 
with initial denaturation for 5 min at 94°C followed by 
35 cycles with following conditions: (1 min at 94°C, 1 min 
at 62°C, and 1 min at 72°C), with final extension at 72°C 
for 10 min. The PCR product was visualized on 1.5% 
agarose gel and purified using Qiagen PCR purification 
kit followed by bidirectional cycle sequencing on ABI 
3100 PE automated capillary sequencer. 
 
Data Analysis 
 

Raw sequences were manually checked using the 
program BioEdit (Hall, 1999) and multiple sequence 
alignment was performed using the program ClustalW 
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as implemented in MEGAX (Kumar et al. 2018). The 
multiple sequence alignments were manually checked 
and level of intra-population genetic diversity were 
estimated based on indices of haplotype diversity (h) 
(Nei and Tajima, 1983) and nucleotide diversity (π) 
(Jukes and Cantor, 1969) in DnaSP version 6 (Rozas et al., 
2017). Analysis of molecular variance was performed to 
examine genetic diversity of C. magur using Arlequin 
version 3.5 (Excoffier and Lischer, 2010). Pair wise 
fixation index (FST) for all population pairs was computed 

using the program Arlequin version 3.5 to assess the 
levels of geographically structuring of the genetic 
variability. The program PopART was used to generate a 
median joining network to examine the genealogical 
relationship among D-loop haplotypes. The haplotype 
distribution was represented in the map as well. 
Further, a maximum likelihood based phylogenetic tree 
was constructed using the program MEGA X using HKY+I 
model with 1000 bootstraps by taking Labeo rohita as an 
out group. 

 

Figure 1. Different Clarias magur sampling site.  Sites of sample collection. 
 
 

 

Table 1. Number of individuals, haplotype number, haplotype diversity and nucleotide diversity, Tajima’s ‘D’ Fu’s ‘F’, Raggedness 
index ‘r’ and   Square of Standard Deviation (SSD) of Clarias magur populations 

Population Code 
Number of  
Individuals 

Number of 
Haplotypes 

Haplotype 
Diversity 

Nucleotide 
Diversity 

Tajima’s 
D 
 

Fu’s F 
F 

Raggedness 
index 

r 

Square of 
Standard 
Deviation 

(SSD) 

Vijayawada, 
Andhra Pradesh 

AP 30 02 0.129 0.00018 -0.76373 
-

0.43926 
0.567 (0.370) 0.040 (0.16) 

Bhubaneswar, 
Odisha 

OD 29 02 0.069 0.00030 -1.73263 0.169 0.876 (0.850) 0.00 (0.120) 

Guwahati, 
Assam 

AS 30 05 0.457 0.00126 -1.19035 -0.957 0.309 (0.960) 0.313 (0.00) 

Raipur, 
Chhattisgarh 

CG 27 03 0.382 0.00095 -0.34809 0.577 0.310 (0.370) 0.035 (0.24) 

Kolkata, 
West Bengal 

WB 30 04 0.697 0.00131 0.48288 0.181 0.147 (0.06) 0.013 (0.210) 

Patna, 
Bihar 

BR 30 05 0.630 0.00114 0.10425 -1.247 0.149 (0.06) 0.016 (0.150) 

Varanasi, 
Uttar Pradesh 

UP 30 06 0.763 0.00206 0.37760 -0.581 0.043 (0.73) 0.001 (0.77) 

*Figures in parenthesis depicts the P-values 
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Arlequin version 3.5 was used to perform 
mismatch and neutrality tests.  In order to evaluate the 
population expansion, Tajima's D test (Tajima, 1989) and 
Fu's Fs test (Fu, 1997) were chosen to examine the 
deviations from neutrality. Additionally, Harpending's 
raggedness index (Harpending et al., 1994) and the sum 
of squared deviations (SSD) between the observed and 
expected mismatch for each of the populations were 
calculated using the methods of Schneider and Excoffier 
(1999) using Arlequin version 3.5 to examine the 
population demographic changes using a parametric 
bootstrap approach (500 replicates). The smoothness of 
the observed mismatch distribution was measured by 
this method and a non-significant result implies an 
expanding population (Harpending, 1994).  

 
Results  
 

Sequence Composition and Genetic Diversity 
 

Partial D-loop/CR sequence of 699 bp length from 
206 individuals were sequenced and submitted in the 
NCBI GenBank (Accession number MT376381 - 
MT376586). In total 16 variable sites were observed 
consisting of 15 parsimonious informative sites and one 
singleton variable site. Examination of average 
nucleotide composition of four nucleotide bases 
revealed AT bias (T = 32.3%, A = 33.0% C = 21.7%, and G 
= 12.9%). In the present investigation, 17 mitochondrial 
haplotypes were observed, number of haplotypes 
ranged from 2 to 6 and maximum number of haplotypes 
was observed in UP population (6 haplotypes) (Table 1). 

The haplotype Hap01 was shared by all the populations 
in addition to this population specific haplotypes were 
observed in the present study. Haplotype frequencies of 
different populations are depicted in Figure 2. The 
haplotype diversity (Hd) and nucleotide diversity (Pi) 
ranged from 0.06897 to 0.76322 and 0.00019 to 
0.00208, respectively (Table 1). The median joining 
network of haplotypes revealed Hap01 is related to all 
other haplotypes suggesting it to be the ancestral one 
and the haplotype distribution was depicted on the map 
(Figure 3). 
 
Genetic Differentiation 
 

In the present study, within population variation 
was observed to be 65.99 % and among population 
variation was observed to be 34.01% as revealed by 
analysis of molecular variance (AMOVA) (Table 2). Pair 
wise FST analysis revealed highly significant genetic 
differentiation among magur populations. Pair wise FST 

varied from 0.01383 to 0.62069 and highest genetic 
differentiation was observed between AP and AS 
population (Table 3). The average FST in the present 
investigation was found to be 0.34014.  To examine the 
relationships and divergence of magur haplotypes a 
likelihood based phylogenetic analysis was performed 
and strongly supports the monophyly of C. magur 
(Figure 4). This revealed the presence of one group of C. 
magur in India.  

Table 1 represented the values of neutrality test, 
including Tajima's D and Fu's Fs analysis. In all 
populations negative values were observed. However, 

 

Figure 2. Heatmap of Clarias magur D-loop haplotype frequencies. 
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Figure 3. A) Median joining network of Clarias magur D-loop haplotypes. 

 

 

Figure 3. B) Distribution of haplotypes in sampling locations. 
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the Tajima's D and Fu's Fs values were negative but 
statistically non-significant. In the present study 
raggedness index (Table 1) under the demographic 
expansion model for each population was calculated 
and found to be non-significant indicating that data has 
relatively good fit to a model of population expansion. 
 

Discussion 
 

Survival chances of individuals and evolutionary 
ability of a population rely on maintenance of genetic 
diversity (Keller and Waller, 2002; Frankham, 2005; 
Höglund, 2009). Though association between genetic 
diversity and population health is obvious (Spielman et 
al., 2004; Höglund, 2009) there are examples of long 

term existence of populations even though low genetic 
diversity (Nichols et al., 2001; Johnson et al., 2009). 
Further, events like gene flow, impact of mutation, 
migration, selection and genetic drift to draw the 
management practices and genetic improvement 
programs depend on population genetic 
characterization of the natural populations. The goal of 
the present study was to generate information on 
genetic diversity and genetic divergence of magur 
populations. The mitochondrial DNA markers were 
widely employed to examine population genetic 
variation and stock characterization (Oleksiak, 2010).  

Here the order of composition of bases A>T> C>G 
observed is in accordance with other fish species (Guo 
et al., 2003; Sahoo et al., 2019). Further it was observed 

Table 2. Analysis of molecular variance of Clarias magur population 

Source of variation d.f Sum of squares Variance components Percentage of variation 

Among populations 6 34.980 0.18589 Va 34.01 
Within populations 199 71.763 0.36062 Vb 65.99 
Total 205 106.743 0.54651 100 
 
 
 

Table 3. Pair wise FST among seven Clarias magur populations 

Population AP OD AS CG WB BR UP 

AP 0.00000       
OD 0.01383 0.00000      
AS 0.62069 0.57627 0.00000     
CG 0.09530 0.08078 0.52475 0.00000    
WB 0.25616 0.23782 0.52530 0.21148 0.00000   
BR 0.13793 0.11272 0.50778 0.12862 0.22571 0.00000  
UP 0.24249 0.21837 0.46772 0.20925 0.26580 0.04894 0.00000 
 
 
 

 
Figure 4. Phylogenetic tree of Clarias magur haplotypes based on Maximum Likelihood method based (Hasegawa-Kishino-Yano 
model, 1000 bootstraps with the highest log likelihood -1697.97). 
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that the sequences of magur CR were A+T rich as 
observed in other fishes (Johns and Avise, 1998). As 
reported in other fish species the nucleotide ‘G’ was 
least represented (Bej et al., 2012, Swain et al., 2014; 
Sahoo et al., 2018). In total, 17 haplotypes were 
observed, and the number of haplotypes ranged from 2 
to 6. Haplotype 1 (Hap01) was shared among all the 
magur populations suggesting the ancestral haplotype. 
The seed for magur aquaculture comes from hatcheries 
as well as natural resources. The sharing of haplotype 
here might be due to common ancestral origin and 
subsequent gene flow among populations (Das et al., 
2017). Of 17 haplotypes exhibited, 15 are population 
specific and not shared by other populations. High 
percentages (88.2%) of population specific haplotypes 
indicated that dispersal among magur individuals is 
restricted (Chenoweth et al., 1998). Further, exhibition 
of high number of private haplotypes might be due to 
independent origin of haplotypes through mutation 
(Sahoo et al., 2018) and could be used as population 
specific marker for stock identification. The overall 
haplotype diversity and nucleotide diversity for seven 
magur populations were 0.652 and 0.00129, 
respectively, showing moderate haplotype and low 
nucleotide diversity. Similar level of genetic diversity 
was reported earlier for Indian magur populations 
(Khedkar et al., 2016). The observed Hd and Pi in the 
present study is within the range observed in other 
freshwater fishes (Habib et al., 2012, Hd=0.876 and 
Pi=0.0843). It is believed that, fishes of the genus Clarias 
have introduced into India during Eocene period 
following migration of Indo-Malayan through Indo-
Brahma River, flowing westward from Assam in the 
North-East to the present-day Arabian Sea (Daniel, 
2001) demonstrating common origin of this species. Low 
nucleotide diversity observed here might be due to 
founder effect from different colonization events as well 
as anthropogenic activities (Khedkar et al., 2016). 
Further, possibility of population bottleneck due to 
habitat reduction, reduced availability of resources 
might have resulted in significant decrease in genetic 
diversity (Craul et al., 2009; Goossens et al., 2006; 
Olivieri et al., 2008; Quemere et al., 2009; Sousa et al., 
2009). Similar genetic diversity patterns from mtDNA 
studies have been reported to be associated with 
parameters such as effective population size and/or 
selection effects for both nuclear and mitochondrial loci 
and genomes (Brito, 2007; Burg and Croxall, 2001). 
High/moderate haplotype diversity and low nucleotide 
diversity as evidenced in magur populations might be 
due to the rapid expansion and population growth after 
a period of low effective population leading to the 
retention of new mutations (Avise et al., 1984; Rogers 
and Harpending, 1992). It is a well-known fact that large 
population size could maintain high haplotype diversity 
within a population (Nei, 1987; Ma et al., 2010).  

The AMOVA analysis for mitochondrial D-loop 
revealed that 34.01% variation was due to among 
populations and 65.99 % was due to within population 

variation. Within and among population variation for 
non-migratory fish species reported to be 67.6% and 
32.4%, respectively (Vrijenhoek, 1998) e.g. Labeo 
fibmbriatus (Swain et al., 2014, 53.76% and 47.36%), 
Catla catla (Behera et al., 2018, 71.65% and 38.73%) and 
Labeo gonius (Behera et al., 2017, 69.47% and 30.53%). 
In the present investigation, the within and among 
genetic variation is within the range reported for non-
migratory fishes. Significant genetic differentiation (FST 
0.01383 to 0.62069) among all population pair was 
observed. Similar results were also reported by Khedkar 
et al. (2016, FST 0.06641 to 0.94301). In comparison to 
estuarine and marine inhabiting fish species freshwater 
fish species tend to exhibit higher levels of genetic 
differentiation and population subdivision (Gyllensten, 
1985; Ward et al., 1994). Significant genetic 
differentiation was observed among all magur 
population pairs and pairwise FST ranged from 0.01383 
to 0.62069. Similar results were reported for magur in 
previous studies using microsatellite markers (Mohindra 
et al., 2012; Jousy et al., 2017). Significant genetic 
differentiation in the present investigation might be due 
to restricted gene flow between population pair, wide 
spread geographical distribution and presence of unique 
haplotypes (Behera et al., 2017). Additionally, study 
samples were collected from sampling sites with wide 
geographic locations, no connectivity and restricted 
gene flow between the populations may be the possible 
reasons to make magur populations highly genetically 
differentiated. Further, this type of genetic clustering 
patterns may be correlated with the geographical 
locations of sampling sites. The results of phylogenetics 
analysis of magur haplotypes revealed monophyly of 
magur haplotypes in the present study. This might be 
due to the common ancestral origin of magur 
populations in India.  
 

Conclusion 
 

In commercially important aquaculture species, 
population genetic structure analysis is crucial for 
optimization of a genetic management strategy or 
genetic improvement programme. Our study revealed 
low genetic diversity and significant genetic 
differentiation observed among magur populations. The 
information generated in the present study would be 
very much essential in the management, conservation, 
and stock improvement programme particularly for a 
commercially exploited species like C. magur in India. 
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