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Abstract 

Stable isotope analysis was used to determine which basal sources supporting native and invasive cyprinid fishes are important in 

a dimictic-eutrophic lake (Lake Zinav, Turkey). We sampled potential primary producers (littoral, pelagic sources and detritus), 

fish and macroinvertebrates from littoral and pelagic zones of the lake during spring and summer in 2013. The relative importance 

of basal sources assimilated by invasive (Carassius spp.) and native fishes (Squalius cephalus, Capoeta banarescui, Cyprinus 

carpio) was estimated using SIAR mixing model. Consumers such as collector-gatherer (1) (-35.33‰) and S. cephalus, Carassius 

spp., and C. carpio had more ¹³C depleted (-32.12, -31.09, -31.54‰, respectively), while C. banarescui, collector-gatherer (2), and 

etc. had more ¹³C enriched values (-25.03, -26.55‰, respectively). SIAR and gut contents indicate that main energy sources were 

highly variable among fishes, three main sources contributed to invasive fish, but littoral sources for C. banarescui, pelagic sources 

for S. cephalus, and detritus and pelagic sources for C. carpio were important. Consumer’s biomass were also partially linked to 

detritus. Our study suggested that all species promoted coupling of pelagic and littoral pathways, and competition for resources 

among invasive and native fishes was likely to cause resources sharing, and to shift to suboptimal resources.   
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Introduction  

Eutrophication leading to higher algal biomass and turbidity and decreased dissolved oxygen concentrations which in 

turn result in decrease in abundance and diversity of organisms and loss of ecosystem functions is considered as one 

of the important factors to change trophic status of the ecosystem that affects primary production sources supporting 

consumers (Anderson, Glibert & Burkholder, 2002). Lake metazoan often assimilate energy derived from both 

autochthonous sources like macrophyta, benthic and pelagic algae and allochthonous sources like terrestrial vegetation. 

The relative availability of these resources is controlled by terrestrial inputs, and their effects on light and low nutrient 

levels limit production of pelagic algae in the low-productivity lakes (Solomon et al., 2011). Allochthonous and  

autochthonous organic matters are been rich in anoxic water and sediments compared to the overlying oxic water, and 
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anoxic metabolism may account for a substantial part (20–60%) of the carbon metabolism and the heterotrophic 

microbial production (Grey, 2016), followed by consumption of these microbes by protozoans (flagellates, ciliates, 

etc.) or zooplankton in the receiving aquatic system (Jones, Grey, Sleep & Arvola, 1999; Cole et al., 2011), thus 

transferred to higher trophic levels within freshwater environments. A variety of processes at multiple trophic levels 

create linkages among terrestrial, pelagic, and benthic energy pathways in lake food webs (Schindler & Scheuerell 

2002; Vadeboncoeur et al. 2003). For instance, benthic consumers may utilize pelagic production that settles on the 

bottom, pelagic consumers may utilize dissolved or particulate terrestrial detritus, and fishes may consume benthic, 

pelagic, or terrestrial prey (Solomon et al., 2011).   

The relative contribution of autochthonous and allochthonous basal sources supporting consumers differ among lake 

systems. Grey, Jones and Sleep, (2000) concluded that the relative importance of allochthonous sources of organic 

carbon decreases with increasing lake trophy. When phytoplankton production is limited in oligotrophic lake, 

zooplankton assimilate planktonic heterotrophs and detritus via the microbial pathway (Van Duinen et al., 2006). 

Vadeboncoeur et al. (2003) assumed that primary and secondary consumer production strongly depends on littoral-

benthic algae in oligotrophic lake. However Mao, Gu, Zeng, Zhou and Sun (2012) reported from food web of eutrophic 

lake studies that phytoplankton were the major primary production sources supporting consumers, and strongly linked 

to benthic secondary production in eutrophic lakes (Hershey et al., 2006). For dystrophic lakes, Lau, Sundh, Vrede, 

Pickova and Goedkoop (2014) indicated that consumers predominantly rely on energy from autochthonous primary 

production sources.   

Lake Zinav is dimictic and the biggest landslide lake, and has regional and national importance because of its natural 

structure, biological diversity, and unique landscape in Tokat Province, Turkey. The lake has been determined as 

eutrophic lake. Degradation of the lake water quality due to increasingly being enriched with organic matter seemed 

to cause eutrophication and algal blooms. Temperature stratification started to develop in spring and reached its peak 

during summer. Mixing period for the lake was between January and April. The dissolved oxygen concentration had 

a minimum value at a depth of 5 m (0.08 mg/l) in summer indicating anoxic conditions (Buhan et al., 2013). Due to 

anoxic condition, fishes inhabits only macrophyte dominated littoral zone of inlet and outlet of the lake. Taxa belongs 

to Cyprinidae such as, Carassius spp. are the most widely distributed invasive fishes in Turkey from Asia and Europe, 

and have been introduced intentionally or not, through various human activities in Lake Zinav. This invasive fish is 

benthopelagic and omnivores, and mostly consume Gastropods, Dipterans, Cladocerans, Copepods, and Ostracods 

(Balik, Karasahin, Ozkok, Cubuk & Uysal, 2003) as in other cyprinids (C. carpio, S. cephalus, C. banarescui) in the 

Lake Zinav. C. carpio was very abundant in Lake Zinav. After the introduction of Carassius spp., abundance of C. 

carpio declined drastically in the lake (Fisherman observation). Carassius spp. tends to be a keystone species, and 

have strong effect on the species composition and trophic linkages, for example, predator–prey links and resource 

competition. Therefore, they might be expected to resources overlap with other cyprinids.   

Understandings of the trophic ecology of invasive species are very important to mitigate the impacts of invasion, and 

robust risk assessment. Natural abundance of stable isotopes might provide as tracer of trophic structure, and important 

information about food source and organic matter processing (Peterson & Fry, 1987). The objectives of this study were 

https://www.frontiersin.org/articles/10.3389/fevo.2016.00008/full#B54
https://www.frontiersin.org/articles/10.3389/fevo.2016.00008/full#B54
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to determine (1) the relative importance of primary production sources supporting the food web of Lake Zinav, (2) the 

trophic interaction between invasive and native fishes in Lake Zinav.  

  

 

  

Materials and Methods  

Study Site  

Lake Zinav, located between 37o 13’-37o 21’N and 40o 32’-40o 23’ E in the Central Black Sea  

Region situated in the northwest district of Reşadiye county of Tokat Province in Turkey (Figure 1). Lake Zinav is the 

biggest natural lake in the Kelkit river basin.  It has a total surface area of 61 km2, with a maximum depth of 20 m. 

Northeastern Turkey has a semi-arid climate with large seasonal variation in temperatures (Kundell, 2009). Water 

temperature reaches the lowest value of 0.77 ºC in March and the highest of 24.91ºC in August (Buhan et al., 2013). 

The Lake Zinav is a dimictic lake, which is circulated in spring and fall, and thermally stratified in summer. The lake 

has been determined as a eutrophic characteristic and undergone eutrophication (Buhan et al., 2013). The lake and its 

basin are under the threats of household sewage, manure and agricultural discharge, and forest destruction. The other 

main factors affecting ecology of the lake are construction of hydroelectric power house and channelizing of the stream 

flowing into the lake. Basin of eutrophic Lake Zinav can be divided into two main areas: a sheltered, 

macrophytedominated littoral zone from inflow (northeast coast) and outflow (southwest coast) of the lake, and 

unvegetated littoral zone that occupies the northwest and southeast coast of the lake (Figure 1).  

 

Food Web Components   

Primary production sources and consumers (fishes, pelagic and benthic macroinvertebrates) for stable isotope analyses 

were collected from Lake Zinav during spring and summer in 2013. Several basal source groups derived from terrestrial 

and aquatic organic matters were collected from littoral and pelagic zone of the lake. Detritus originating from dead 

or recently fallen leaves from terrestrial vegetation was collected from the substrate. Green leaves of the dominant 

submersed and floating leaved macrophyte were collected by hand, and macrophytes and associated epiphyton were 

sampled from plant clippings and stems below water line. Hence two sources were combined based on similarities of 

theirs δ13C values, and referred to as “littoral sources” (epiphyton and macrophyte-derived energy source). Water 

samples were collected in 5- 

L opaque bottles and filtered through a 60-µm sieve to remove zooplankton; remaining particles that settled onto the 

bottom were collected as seston samples (< 60µm) that were dominated by phytoplankton. Seston was sampled at 

surface and a depth of approximately 10m in both seasons but seston samples taken at surface during spring and 10 

meter during summer were not read properly in mass spectrometry. After that we referred to seston as “pelagic 

sources”. Microscopic observations showed that dominant species of seston were various cysts, diatoms protozoa 

(ciliate), and less cyanobacteria during spring, and during summer cyanobacteria (Anabaena sp., Aphanizomenon sp.) 

were more abundant taxa of seston, followed by dinoflagellates (Ceratium sp. and Peridinium sp.), Euglena spp., 

http://www.eoearth.org/article/Temperature
http://www.eoearth.org/article/Temperature
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Scenedesmus spp., Peridinium sp. and diatoms. In the laboratory, seston, epiphyton samples were filtered onto pre-

combusted (450ºC for 4 h) Whatman GF/F glass fiber filters and then immediately frozen.   

Zooplankton were collected from offshore area of the lake using standard plankton net (60 µm). Zooplankton samples 

were placed in an insulated box and transported to the laboratory for identification and analysis. The zooplankton 

community in Lake Zinav was dominated by Difflugia spp. (Arcellinida, Amoebozoa) was the dominant taxa and 

Keratella and Filinia spp. (Rotifera), cladocera were also found in the lake surface area in spring. However, rotifers 

with Keratella spp. and Asplanchna spp. and copepods with cyclopoida, calanoida and nauplii the most abundant in 

summer.  

Chironomidae (Diptera larvae) were collected with an Ekman grab on the lake bottom (sublittoral zone of unvegetated 

southeast coast, ~5m), and Chironomus (Blood-red Chironomidae) made up the overwhelming majority of 

Chironomidae samples. Baetidae (Baetis spp.) and Nematoda were sampled only littoral zone of unvegetated southeast 

coast of the lake. Other benthic invertebrates inhabiting in macrophyte-dominated littoral zone were collected by 

sweeping both macrophye and benthos with a pond net. They were transported live to the laboratory, and then housed 

in containers with river water within a refrigerator for 24 h to allow them to empty their guts before euthanasia to 

obtain tissue samples. Common aquatic invertebrates were identified to order or genus using keys provided by 

Bouchard (2004).  

Fishes were collected during dawn (5am - 8am) in macrophyte -dominated littoral zone of the lake using experimental 

gillnets with panels of 25, 30, 40, 50, 60, 70 and 80-mm mesh. We captured only 2 individuals of C. carpio during all 

study periods. Fish specimens were euthanized in an ice bath and stored on ice for transport to the laboratory where 

they were identified to species, weighed, and measured for standard length. To understand what these fishes consume, 

we analyzed some individual’s gut contents using a stereomicroscope or light microscope.  

 

Fish Gut Content Analyses  

We did not remove gut contents from macroinvertebrate samples. 30 individuals of fish species (Carassius spp.: 8, S. 

cephalus: 13, C. banarescui: 7, C. carpio: 2) were dissected for gut content analyses, which were quantified 

volumetrically using the method by Akin (2001). Data were reported as the proportional volumetric consumption of 

food items in stomachs of fishes. Stomachs were later opened and the contents were collected into petri dishes for 

enumeration and identification. All prey items were removed from the anterior half of the gut and examined under a 

dissecting microscope, or compound microscope. Each prey item was identified to the lowest possible taxonomic level.   

 

Stable Isotope Analysis  

In the laboratory, white muscle tissue was removed posterior to the dorsal fin of a total of 16 fish specimens for stable 

isotope analysis. For larger consumers (fish, benthic macroinvertebrates), each sample consisted of a single individual, 

but for smaller consumers (benthic invertebrates), samples were a composite of several individuals (an average of 10 

individuals from each invertebrate sample) to generate minimal weights (3 mg) for stable isotope analyses. All primary 

production and consumer samples were dried to constant weight at 60 ºC for 48 hours in an oven. Dried samples were 
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ground into a fine powder and stored in glass vials. Each sample subsequently was weighed to 0.001 mg and sealed 

inside ultra-pure tin capsules (Elemental Microanalysis Limited ®). Samples were analyzed for carbon and nitrogen 

isotope ratios using mass spectrometry at the Analytical Chemistry Laboratory of the Institute of Ecology, University 

of Georgia, USA. Analytical precision for both carbon and nitrogen stable isotope was 0.10‰. Ratios (R) of the heavy 

isotope to the light isotopes (13C/12C, 15N/14N) were expressed in parts per thousand, relative to the standards in delta 

notation following the formula:   

δX = [(Rsample/Rstandard) − 1] x 1000  

in which the standards are Pee Dee Belemnite limestone and atmospheric molecular nitrogen for C and N, respectively.  

 

Data Analyses  

Benthic invertebrate taxa were classified into 3 functional feeding groups (FFG) according to their feeding mode 

(Mandaville, 2002): collectors-gatherer (c-g), scraper (scr) (Gyraulus sp., Gastropoda) and predators (prd) (Hirudinea, 

Odonata larvae) (Table 1). Food was obtained from bottom detritus for collector, live benthic invertebrates for predator, 

and periphyton, or attached algae for scraper. Collectors-gatherers were divided in two subgroups based on δ13C values: 

c-g (1) with 13C-depleted (Chironomus sp. (Chironomidae), Baetis sp. (Baetidae) larvae, Nematoda) and c-g (2) with 

13C-enriched (Gammarus sp. (Amphipoda), Physella sp. (Gastropoda), Lumbricina sp. (Annelida)) (Table 1).   

The relative contribution of primary production sources assimilated by aquatic consumers was estimated based on δ13C 

and δ15N values of tissues from common primary producers and consumers using a Bayesian stable isotope mixing 

model, SIAR (Parnel, Inger, Bearhop & Jackson, 2010) in R statistical software (version 3.0.2, R Project for Statistical 

Computing). This model produces a combination of feasible solutions for proportional contributions of alterative 

primary production sources assimilated by consumer tissues. SIAR is based on a Bayesian approach that estimates 

probability distributions of source contributions to consumer tissue by accounting for uncertainties associated with the 

input data (i.e., sources signatures and trophic enrichment factors (TEF)) (Parnell et al., 2010). In the first place the 

food sources (primary producers) assimilating from fish and invertebrates (consumers) were estimated using SIAR. 

Inputs are δ13C and δ15N for each 3 potential primary production sources and their associated standard errors, a trophic 

enrichment value (TEFs) and their standard errors, and consumer isotopic signatures (Franca et al., 2011). We used a 

TEF value a TEFs of 0.4±1.3‰ for δ13C and 3.4 ±1‰ for δ15N (Post 2002) for all end members. Because we only had 

single data points (unreplicated data) for scraper group (Gyraulus sp.) in this study, we used the special SIAR function 

“siarsolomcmcv4” that does not include a residual error term instead of “siarmcmcdirichletv4” command in SIAR 

mixing model (Inger, Jackson, Parnell & Bearhop, 2010).   

 

 

 

Results  

Stable Isotope Composition of Primary Production Sources  

Littoral source was always enriched in 13C relative to other primary production sources (spring: - 
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26.45‰, summer: -27.10‰). Mean δ13C values for detritus ranged from −29.16‰ (spring) to −29.09‰ (summer) 

(Table 1, Figure 2). Pelagic source was the most 13C-depleted potential basal sources, ranging from -37.13‰ (spring) 

to -33.18‰ (summer). δ13C value of potential primary production sources did not appear to differ seasonally except 

pelagic source which had relatively higher δ13C values in summer compare to spring (Table 1, Figure 2). Although all 

primary production sources had similar average signatures of δ15N during spring (from 4.11‰ to 5.10‰), the mean 

δ15N values of detritus and pelagic source (4.56‰ and 4.94‰) were higher than those of littoral source (3.33‰) during 

summer (Table 1).  

 

Stable Isotope Composition of Consumers  

A total of 11 taxa of benthic invertebrates of which 6 were collector-gatherer, 4 were predator, and 1 was scraper 

during spring was analyzed (Table 1).  The mean δ13C values of c-g (1) ranged from -36.29‰ for Chironomus spp. to 

-34.18‰ for Baetis sp., whereas c-g (2) had δ13C values from -26.85‰ for Gammarus sp. to -26.06‰ for Physella sp., 

and δ15N values of c-g (1) (5.78 – 6.52‰) were lower than those of c-g (2).  Members of c-g (1) had lower δ13C values 

relative to members of c-g (2) (7.20 - 8.31‰). The δ13C values of the predator samples varied from -32.46‰ in 

Libellulidae nymph (Odonata) to -27.37‰ in Hirudinea. The highest δ15N value of leeches (Hirudinea) placed this 

taxa at the top of the food web. There were seasonal differences in δ13C of zooplankton but not in δ15N. δ13C value of 

zooplankton were relatively higher in spring  

(-28.02‰) than in summer (-32.57‰) (Table 1, Figure 2).   

Cyprinid was the only fishes taxa captured from the Lake Zinav. Among cyprinid fish Capoeta banarescui, Squalius 

cephalus and Carassius spp. were collected only during spring, but Cyprinus carpio was collected only during summer 

in the lake. The δ13C values were different among fish species, whereas δ15N values were not, ranging from 10.64‰ 

to 11.05‰ (Table 1, Figure 2). While S. cephalus and Carassius spp. had similar δ13C values (-32.12‰ and -31.12‰), 

C. banarescui tend to be more13C-enriched (-25.03‰), and had higher variation in δ13C (-22.78 to -29.49‰ ± 2.15 

SD) relative to other fishes. C. carpio captured during summer had relatively light carbon (-31.54‰) and nitrogen 

(8.58‰) ratios (Table 1). An isotope bi-plot of fishes clearly shows that fishes varied in carbon isotopic composition, 

S. cephalus and Carassius spp. from spring, and C. carpio from summer have most depleted in 13C relative to C. 

banarescui (Table 1, Figure 2).  

  

Overview of Fish Diets  

A total of 16 different prey types were found in all fishes guts, the major prey items consumed by 4 fish taxa (as 

percentage of total volume extracted) detritus (35%), pelagic crustaceans (cladocera, calanoida, cyclopoida, 

harpacticoida) (20%), filamentous algae (such as Cladophora, Spirogyra, Ulothrix sp.), (18%), chironomid larvae 

(13%), chironomid adults (5%), insects parts (4%), diatoms (2%). Other prey items had percentage volumes less than 

1%. Filamentous algae (63% of diet by volume) and chironomid larvae (22%), diatoms (5%), pelagic crustaceans 

(5%), other insect parts (3%), and simuulidae larvae (2%) were consumed by C. banarescui. which ingested the highest 

number of different prey items. Calanoida (28%), cyclopoida (22%), chironomid adults (20%) and larvae (18%), 
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cladocera (10%), and aquatic plants (2%) comprised the diet of S. cephalus. A substantial proportion of Carassius spp. 

diet was accounted for by detritus (58%), with a smaller proportion of filamentous algae (11%), pelagic crustacean 

(15%), chironomid larvae (9%), and diatom (7%). Detritus (84%), some insects part (11%) and chironomid larvae 

(5%) were consumed by C. carpio.  

 

Primary Production Sources Supporting Aquatic Consumers  

During spring, SIAR mixing model results indicated that littoral sources (61%) accounted for a large fraction of C. 

banarescui, with detritus also being an important contributor (34%) (Figures 2, Figure 3). S. cephalus assimilated 

organic matter derived from mostly pelagic sources and detritus, accounting for 57% and 30%, respectively. Detritus, 

pelagic and littoral sources were contributed equally to biomass of invasive fish, Carassius spp. Pelagic source (64%) 

was the principal sources supporting c-g (1). Littoral source (47%) and detritus (37%) apparently supported significant 

proportions of c-g (2) (Figures 2, Figure 3). Predator invertebrates and zooplankton seemed to assimilate material from 

littoral source and detritus, whereas littoral source (69%) was the main sources supporting biomass of scraper in spring 

(Figures 2, Figure 3). During summer, pelagic source contributed up to 46% - 44% of carbon assimilated by C. carpio 

and zooplankton biomass, detritus (28%-30%) and littoral source (26% -27%) were secondarily important (Figures 2, 

Figure 3).   

 

Discussion  

Stable isotopes and diet-based results demonstrate that littoral trophic pathways account for more than half of total 

invertebrate’s biomass, whereas fishes use different trophic pathways (littoral, pelagic or detrital). However fishes that 

are generally thought as pelagic consumed partially zoobenthos (chironomidae larvae or adults), indicating cross-chain 

omnivory and trophic coupling between benthic and pelagic pathways (Vander Zanden & Vadeboncoeur, 2002). 

Wagner, Volkmann and Dettinger-Klemm (2012) reported that chironomid pupae ascending from the sediment to the 

water surface represented a trophic linkage between the benthic and the pelagic food web via predation by pelagic fish.  

Pelagic source δ¹³C varied seasonally in the Lake Zinav, and this variation could be  linked to variation in the relative 

contribution of different sources to seston, degree of isotopic fractionation during carbon fixation, phytoplankton 

species composition, temperature, degree of lipid production (McCusker, Ostrom, Ostrom, Jeremiason & Baker, 1999), 

composition of dissolved inorganic carbon (DIC) (CO2 or HCOᴣ) and pH (Zeng, Kong, Zhang, Tan & Wul, 2008; 

Caroni, Free, Visconti & Manca, 2012) as well as fractions of terrestrial detritus within pools of suspended fine 

particulate organic matter (Kendall, Silva & Kelly, 2001). Rautio and Vincent (2007) reported that artic water bodies 

with high pH (>8) had higher HCO3
- concentration in DIC than subarctic water with low pH (< 7). Since HCO3

- is 

enriched in 13C by ~10‰ relative to CO2, the primary producers were isotopically heavier in the arctic than in the 

subarctic. In this study, pelagic source were sampled at surface during summer and a depth of approximately 10m 

which were highly negative (-37.13‰) in spring. Previous study from Lake Zinav showed that surface water had high 

pH (8.36) and low turbidity (5.05 NTU) in summer and low pH (6.95) at depth of ~10m and high turbidity (8.40 NTU) 

in spring (Buhan et al., 2013), consisted of mostly blooms of cyanobacteria in summer, whereas diatom and protozoa 

http://onlinelibrary.wiley.com/doi/10.1890/ES11-00181.1/full#i2150-8925-3-2-art14-VanderZanden1
http://onlinelibrary.wiley.com/doi/10.1890/ES11-00181.1/full#i2150-8925-3-2-art14-VanderZanden1
http://onlinelibrary.wiley.com/doi/10.1890/ES11-00181.1/full#i2150-8925-3-2-art14-VanderZanden1
http://onlinelibrary.wiley.com/doi/10.1890/ES11-00181.1/full#i2150-8925-3-2-art14-VanderZanden1
http://onlinelibrary.wiley.com/doi/10.1890/ES11-00181.1/full#i2150-8925-3-2-art14-VanderZanden1
http://onlinelibrary.wiley.com/doi/10.1890/ES11-00181.1/full#i2150-8925-3-2-art14-VanderZanden1
http://onlinelibrary.wiley.com/doi/10.1890/ES11-00181.1/full#i2150-8925-3-2-art14-VanderZanden1
http://onlinelibrary.wiley.com/doi/10.1890/ES11-00181.1/full#i2150-8925-3-2-art14-VanderZanden1
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dominated in spring. Recent studies have found that cyanobacteria showed a strong preference for HCO3
- which has 

been associated with the very low CO2-affinity of RubisCO type IB (Hoins et al., 2016). We, therefore, suggested that 

the seasonal differences in δ¹³C values of pelagic source were explained by pH, composition of algae and contribution 

of terrestrially derived organic matter based on higher turbidity. Pelagic source (seston) from Lake Zinav were more 

¹³C depleted compared with previously measured values from rivers and dam lakes of Central Black Sea region where 

this current study was performed (Akin et al., 2010; Kaymak et al., 2015), and those from other eutrophic lakes (Zhou 

et al., 2011; Mao et al., 2012; Gao, Zhong, Ning, Liu & Jeppesen, 2017). This might be suggested that carbon derived 

from microbial loop by bacterioplankton in water column of Lake Zinav, such as nitrification (Kelley & Coffin, 1998), 

sulfur (Doi et al., 2006) and methane oxidation (Jones & Grey, 2011).  

Seasonal variation was observed in δ¹³C values of zooplankton which was 5% lower in summer than in spring. 

Examining the carbon isotopic ratio of zooplankton and mixing model indicated that zooplankton assimilated organic 

matter from pelagic source (mostly cyanobacteria) and detritus in summer, whereas littoral source and detritus made 

up a substantial part of food of the zooplankton in spring. Buhan et al., (2013) found that phytoplankton biomass 

(chlorophyll-a) were lower in spring (19µg/l) than in summer (53µg/l), this was associated with much ¹³Cenriched 

value which was reflected in zooplankton in Lake Zinav. Few studies using stable isotope analysis showed that relative 

enrichment in δ¹³C in zooplankton during spring was associated with increased contribution of macrophytes and 

associated periphyton to biomass of zooplankton (Jones & Waldron 2003; De Kluijver et al., 2015). Macrophytes and 

associated periphyton have usually higher δ¹³C values compared with phytoplankton (Fry, 2006). Zooplankton are 

known to feed primarily on phytoplankton, but sometimes can obtain organic matter from allochthonous sources (Cole 

et al., 2011) and/or dissolved organic carbon derived from macrophytes and the attached periphyton during detritus 

formation (Findlay et al., 1986). Some authors reported that bacteria or fungi attached to flocculated particulate organic 

matter and grazed by directly heterotrophic flagellates and Amoebozoa (Kankaala, Taipale, Li & Jones, 2010; Jassey, 

Shimano, Dupuy, Toussaint & Gilbert, 2012) which were the dominant taxa of zooplankton in the Lake Zinav. Hence, 

macrophytes and associated periphyton could support zooplankton biomass via microbial pathway (De Kluijver et al., 

2015). In contrast, when chlorophyll-a concentration was higher during summer, δ¹³C values of zooplankton and 

pelagic source were very similar, suggesting that zooplankton assimilated more on pelagic source and less on the 

carbon subsidy from littoral source derived from macrophyte–periphyton. Copepods consisted of main component of 

zooplankton in summer in the lake are selective feeders and generally consume larger particles of high quality, such 

as phytoplankton.  

Some collector taxa (c-g (1)) from unvegetated area such as Chironomus sp., Baetis sp., and nematoda exhibited a 

strongly depleted δ13C values from littoral to sublittoral with depth.  These taxa classified as detritivores, and have 

been considered to utilize phytoplankton and phytodetritus, settling down through the water column to the sediment 

surface (Jones & Grey 2011). Based on the isotopic values and mixing model in this study, pelagic source accounted 

for the observed 13C depletion seen in these taxa. Therefore, the process of benthic-pelagic coupling has been 

considered important in lake food webs. On the other hand, other collector taxa (c-g (2)) (Oligochaeta, Physella sp., 

Gammarus sp.), which inhabits the macrophyte dominated littoral zone, were generally 13C enriched than taxa form c-
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g (1), indicating a stronger reliance on detritus from riparian plants and macrophyta and associated periphyton from 

littoral zone. Similar results also have been reported in other studies that these taxa assimilated the energy derived 

from autochthonous aquatic vascular plants and epiphytes (Cremona et al., 2010; Boll et al., 2012).  

In this study, fishes inhabited only macrophyte dominated littoral zone with depth of area not exceeding 2 m because 

of a prevailing anoxic condition in deeper parts of lake. Our stable isotope bi-plot demonstrated that native fishes (S. 

cephalus and C. carpio) showed similar trophic niche with invasive fish (Carassius spp.), while native C. banarescui 

displayed different trophic niche. There are no resources overlapping among native fishes, but some resources overlap 

was observed between native S. cephalus and invasive Carassius spp. in spring. Stable isotope and gut content analysis 

indicated that native S. cephalus consumed mostly zooplankton, indicating that most of its diet was pelagic origin, 

filamentous algae from littoral source for C. banarescui, and detritus which may be originated from allochthonous or 

autochthonous sources, filamentous algae, invertebrates were a common food item for Carassius spp. in spring.  These 

results indicated that invasive fish was opportunistic feeders, meaning they ate just about anything that can fit in their 

mouth. During summer, C. carpio consumed detritus more than that of Carassius spp., indicating that two fish species 

were likely to exploit the detritus that originates from sedimentation of planktonic algae based on the stable isotope 

values.  The high portion of such low-energy foods in diets of these fish taxa may be indicative for a competition 

induced niche shift to sub-optimal food sources (Didenko & Kruzhylina, 2015). Specialization in habitat resources and 

food partitioning is one of the primary mechanism to reduce interspecific competition, and facilitate the co-occurrence 

of related species (Guo et al., 2014). Increased competition for resources among invasive and native fishes could cause 

to shift to suboptimal resources in order to meet energy requirements. Other studies also suggests that native and 

invasive fishes can shift their trophic niche as a result of inter-specific competition, either by incorporating coexisting 

invaders in their diet and/or by shifting their diet to novel resources (Jackson et al. 2012; Jackson & Britton, 2014). 

All cyprinid fishes consumed similar diet items but different proportion, and assimilated energy from different trophic 

pathways (littoral or pelagic), but to some extent, detritus from terrestrial and/or aquatic sources via microbial pathways 

supported all consumers in Lake Zinav. Even species that are generally thought as pelagic or littoral were partially 

supported by zoobenthos or zooplankton, respectively, indicating trophic coupling between littoral and pelagic 

pathways. Coupling of pelagic and littoral habitats can occur directly via movement of fish between habitats and 

indirectly via horizontal migrations of zooplankton from the pelagic to the littoral zone where they seek refuge from 

fish predation (Vesterinen, 2013).    

The larger variance found in δ¹³C between individuals of C. banarescu caught in the Lake Zinav, suggesting a greater 

complexity in primary production sources or variation in habitat use in order to minimize resource overlap among 

fishes, and avoid inter-intraspecific competition. Populations consuming a wider range of diet and those that forage in 

a range of geographical areas could display wider isotopic variation (Bearhop, Adams, Waldrons, Fuller & Macleod, 

2004). Although we did not encounter in samples collected from the lake, simuliidae larvae were found in the guts of 

this species. Buhan et al. (2013) reported that simuliidae larvae and filamentous algae from the tributary had enriched 

and depleted δ¹³C value (-25.64 and -30.13‰, respectively), thus some individuals of C. banarescui move between 

the lake and tributary for feeding, and might have reflected carbon signatures of diets from the tributary.  
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As a conclusion, this study demonstrated that littoral zone with macrophyte dominated influenced the functioning of 

food web structure. Pelagic source and phytodetritus is likely to utilize by zooplankton, C. carpio in summer and S. 

cephalus, Carassius spp., and collector gatherer invertebrates such as chironomid larvae and nematods in spring. 

During spring, detritus, macrophytes and associated periphyton made an important contribution for consumers, 

especially C. banarescui, and most benthic invertebrates and zooplankton. Littoral sources production not only 

supports littoral communities, but also subsidizes the diet of pelagic consumers (Vander Zanden, Vadeboncoeur & 

Chandra, 2011), and fishes would promote coupling of the littoral and pelagic food webs. Although all native and 

invasive cyprinid fishes predominated only in littoral zone of the lake, the proportion of diets differed among species, 

suggesting high degree of resource sharing between cyprinids to avoid competition. But, the further studies are needed 

to understanding of how seasonal and spatial variation in hydrology affect stable isotope values of producers and 

consumers and its effect on function and structure of lake food web, also expose qualitative and quantitative of bacterial 

biomass and estimate the relative contribution of Lake food web.  
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Table 1. Summary of δ¹³C and δ¹N values measured for basal sources and macroinvertebrates, and standard length (SL), δ¹³C and 

δ¹5N values measured for fishes sampled during spring (May 2013) and summer (July 2013) seasons from the Lake Zinav (N: the 

number of individuals analyzed for stable isotope analyses; SD: standard deviation)  
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Figure 1. Location of study sites in the Lake Zinav, Turkey.  
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Figure 2. Stable isotope signatures (δ¹³C and δ¹N) for primary production sources (triangle symbols (▲)), invertebrates and 

zooplankton (diamond symbols (♦)) and fish (circle symbols (●)) in the Lake Zinav during (a) spring 2013, and (b) summer seasons 

2013. Code designate different taxa (see Table 1 for key). The circles represented isotopic space of each fish taxa during spring and 

summer.  
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Figure 3. Box plots derived from the stable isotope analysis in SIAR mixing model, showing the contribution of three basal sources 

to the diets of all consumers (fishes and invertebrates) during spring (a), and summer (b). The proportions show credibility intervals 

plotted at 95, 75 and 25% credibility intervals.  


