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Cd2+ and Pb2+ Induced Structural, Functional and Compositional Changes 

in The Liver and Muscle Tissue of Crucian Carp (Carassius auratus 

gibelio): an FT-IR Study 

Introduction 
 

Heavy metals are serious environmental 

pollutants because of their persistency, non 

biodegradability and higher accumulative tendency in 

the living tissue (Begum et al. 2005, Gupta and 

Karthikeyan 2016). Among heavy metals, cadmium 

(Cd) and lead (Pb) are the prominent toxic metals 

(Lim et al. 2008, Senthil Kumar et al. 2008) with no 

known nutritive values (Poole et al. 2005, Xu et al. 

2008) and are abundant in nature. The common 

sources of Cd and Pb pollution are contaminated soils, 

sediments and waters due to natural and 

anthropogenic activities which cause their entry into 

the food chain and generating various adverse effects 

in animals and humans (Chai et al. 2014, Chakraborty 

et al. 2012, Khan et al. 2014).  Though freshwater 

ecosystems have certain physico-chemical and 

biological mechanisms to counteract or eliminate the 

adverse effects of pollutants; however, toxicants may 

induce changes in normal growth, reproduction and 

behavior or may be fatal to freshwater organisms 

(Rand et al. 2003).  

Cadmium has the ability to disturb various 

cellular functions and can damage the structures of 

different cellular compartments (Nemmiche et al. 

2007), because of the higher affinity of Cd2+ ions to 

biological structures consisting of sulfhydryl (-SH), 

carboxyl and phosphate groups. This may cause the 

inhibition of numerous enzymes and disturbance of 

important metabolic processes including lipid 

metabolism (Krishnakumar et al. 2012, Murugavel 

and Pari 2007). On the other hand, Pb toxicity may 

occur through the ionic Pb2+ replacement with certain 

divalent ions such as Zn, Fe and by calcium mimicry 

(Tellis et al. 2014) causing neurological disorders, 

genotoxicity, muscular spasms, haematological 

alterations, paralysis and mortality in the exposed 

freshwater fish (Martinez et al. 2004, Grosell et al. 

2006, Monteiro et al. 2011). However, the mechanism 

of Cd and Pb induced molecular alterations in the 

tissues and cells are still not clear. 

Fish play an important role in balanced and 

nutritious diet containing a vital source of proteins 

and long chain polyunsaturated fatty acids with high 

quantity of fat soluble vitamins. However it can also 

be a source of trace metal exposure due to excessive 

amount of elements they can contain, in which some 

are highly toxic to human (Carvalho et al. 2005).  The 

nutritive value of fish greatly depends on their 
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 Abstract 

 

Contamination of aquatic ecosystems with toxic metals such as Cd2+ and Pb2+ is a serious issue in the industrialized 

world, which can affect freshwater fish even at low concentrations. The aim of the present study was to investigate the effect 

of Cd2+ and Pb2+ alone or in combination on the biochemical constituents of liver and muscle in Crucian carp using Fourier 

Transform Infrared Spectroscopy (FT-IR). Results from the spectral analysis revealed significant decline in protein and 

increase in lipids in the two tissues with marked effect caused by the combined exposure of Cd2+ and Pb2+. In case of liver, 

alteration in the intensity and band area at amide I resulted in a differential response of structural protein for the exposed 

groups. Furthermore, a decrease in the α-helix and alterations in the nucleic acids content was also observed in both liver and 

muscle of the exposed fish. Moreover, biochemical alterations in the vital tissue of freshwater fish due to toxic contaminants 

can be used as a marker of environmental pollution with the help of FT-IR spectroscopy. 

 

Keywords: FT-IR, Crucian carp (Carassius auratus gibelio), Liver, Muscle, Cd2+, Pb2+, Biochemical changes. 
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biochemical constituent which is affected by polluted 

water because of their direct contact with the toxicant 

in contaminated waters (Burger et al. 2002). Metals 

usually accumulate in the high fatty tissues of muscle, 

or in some specific organs, based on the lipophilic 

nature of the toxic chemical and how they are 

metabolized by the organism. Once enter to an 

organism, metals tend to remain in various tissues and 

may continuously accumulate with subsequent 

exposures. The bioaccumulation of metals mostly 

depends on the species, feeding habits and life style of 

the exposed fish. Although fish muscle is not an 

active part in accumulating heavy metals, there is 

evidence that certain metals in the fish muscles 

exceeded the acceptable range in some polluted 

regions. Therefore, studies on metal toxicity of fish 

are of vital importance in terms of food safety 

perspectives (Palaniappan and Renju 2009, Uysal et 

al. 2008). 

Fourier Transform Infrared (FT-IR) 

spectroscopy is a non-perturbing and sensitive 

analytical technique with practical advantages. 

Application of FT-IR to biological sample is started at 

the mid of this century. Recently, this technique has 

become an independent and advance modality in 

terms of high sensitivity in detecting changes in the 

functional groups belonging to the specific 

components of tissue such as proteins, lipids, 

carbohydrates and nucleic acids (Karthikeyan and 

Easwaran 2013). Because of high sensitivity, this 

technique is capable of providing a strong insight on 

the structural and functional changes induced by 

various factors (Lu et al. 2011, Palaniappan and 

Renju 2009, Staniszewska et al. 2014). The liver and 

muscle tissue of fish under toxic metal exposure draw 

much of our attention due to detoxification and 

accumulation of metals (Khan et al. 2014). Crucian 

carp is an important food fish and a good 

experimental model, indicating the effects of organic 

and inorganic pollutants in different studies (Zhang et 

al. 2007, Shao et al. 2010, Khan et al. 2014). 

However, there is limited information about the 

individual and combine effect of water born Cd and 

Pb on the biochemical alteration of liver and muscle 

of Crucian carp. In the present study an attempt was 

made to elucidate the structural, functional and 

compositional changes induced by environmentally 

relevant Cd and Pb using FT-IR spectroscopy. 

 

Materials and Methods 

 
Chemical and Reagents 

 

Cadmium chloride and Lead nitrate of purity > 

99%, Nitric acid, Acetic acid (conc. glyacial), Sodium 

thiaosulphate, EDTA (disodium salt of EDTA), 

Potassium iodide crystal, Megnisum sulphate, 

Erichrome black T, Ammonium chloride and 

Ammonium hydroxide  were purchased from 

Sinopharm Chemical Reagents Co., Ltd (Beijing, 

China). The deionized water used for preparation of 

reagents and elemental stock solutions were passed 

through Millipore purification apparatus (Millipore, 

MA, USA) to a resistivity higher than 18.2 MΩ·cm. 

ICP-Multi-element certified reference materials 

(CRM) were obtained from PerkinElmer 

No.N9300281, 1 Shelton, Connecticut, USA. All the 

chemicals were analytical grade and used without any 

further purification. 

 

Fish Acclimation and Experimental Condition 

 

Crucian carp with mean body weight 92±4.2 g 

and mean length 12±2.6 cm were obtained from a 

freshwater fish breeding base in Wuhan, China and 

immediately transported to the laboratory in plastic 

container. On arrival, fish were released to 200 L 

plastic tank having dechlorinated tap water with 

continuous supply of oxygen. Tap water was 

dechlorinated by exposure to light followed by one 

day aeration with stone aerators before release of fish. 

Water quality was regularly monitored prior and later 

during experimentation according to the standard 

methods of APHA (1992). The optimum condition 

(total hardness 156.32±4.43 mgL-1 as CaCO3, temp. 

22.41±2.11 oC, pH 7.6±0.31 , dissolved oxygen 

8.26±0.68 mgL-1) for water quality was maintained 

till the end of the experiment. Fish were acclamated to 

the laboratory condition for a peroid of 1 week in a 

laboratory tanks (50 cm × 30 cm × 30 cm) under 

natural photoperiod. During acclimation fish were fed 

with artificial feed once a day until a day before 

termination of acclimation period. Half of the 

aquarium water was renewd everyday to clean the 

residual feed and ammonia produced by fish. All the 

experiments were carried out according to the 

guidelines of Chinese Law for Animal Health 

Protection and Instructions for Granting Permits for 

Animal Experimentation for Scientific Purposes 

[Ethics approval No. SCXK (YU) 2005-0001]. 

 

Exposure to Cd2+ and Pb2+  

 

All the acclimated fish were randomly divided 

into four different groups:  control group, Pb group, 

Cd group and Cd+Pb group without making any 

distinction between sexes. Control group was kept 

under similar experimental condition but without any 

addition of test chemical while Pb group was exposed 

to 30 µgL-1 Pb as Pb(NO3)2. The Cd group was 

exposed to 100 µgL-1 Cd in the form of CdCl2, 

whereas Cd+Pb group was exposed to a combination 

of the two test chemicals at the same rate. The 

exposure duration was 21days for all the groups. The 

respective concentrations were closely monitored in 

the aquarium at 2 days interval by ICP-OES to 

maintain the desired concentration in the tanks. The 

exposure concentration of Cd and Pb was selected on 

the basis of previous studies (Khan et al. 2015a, Khan 

et al. 2015b, Qu et al. 2014), which suggested that 
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exposure to these concentrations might significantly 

inhibit the activity of antioxidant enzymes and induce 

a pro-oxidant condition in the various tissues of 

freshwater fish. Moreover, these concentrations are 

somewhat related to the contamination levels of rivers 

and lakes in China (An et al. 2010, Bing et al. 2013, 

Li et al. 2013, Wang et al. 2012, Yang et al. 2009, 

Zhou et al. 2007). At completion of the exposure 

period, fish from all the groups were sacrificed and 

tissues like liver and white muscles were isolated and 

stored at -80 °C until analysis. 

 

Sample Preparation 

 

The liver and muscle tissues were lyophilized 

for 12h to remove its water content completely. The 

samples were then ground with the help of an agate 

mortar and pestle to bring it in powdered form.  

Finely powdered tissues were mixed with pre-dried 

potassium bromide in a ratio of 1:100 respectively 

and subjected to a high pressure (3000 Psi) for 5 min 

in an evacuated die to produce a transparent sample 

pellet of 1 mm thickness and 13 mm diameter for use 

in FTIR spectrophotometer.  

 

FT-IR Analysis 

 

FT-IR spectra were recorded on NEXUS 470 

spectrophotometer installed at Central Lab. of Food 

Science and Technology College, Huazhong 

Agricultural University. The pellets were scanned at 

room temperature in the spectral range of 4000~500 

cm-1 at a resolution of 4 cm-1, with air as the 

background. Special care was taken during pellet 

preparation by taking equal amount of sample and 

applying same pressure to maintain the same 

thickness of pellets. Thus the spectra possibly related 

to the intensities of the absorption bands and to the 

concentration of the corresponding functional groups 

(Cakmak et al. 2006, Dogan et al. 2007). All the 

spectra obtained were analyzed by ORIGIN 9.0 

software (Origin Lab CO., Northampton, MA, USA). 

 

Statistical Analysis 

 

Statistical analysis was performed by SPSS 16 

software, Chicago USA. All the experiments were 

replicated 3 times. One way analysis of variance 

followed by Duncan Multiple Range Test (DMRT) 

was performed to differentiate the corresponding band 

area values of control and experimental animals in 

each group. A probability level (P-value) of less than 

0.05 was regarded as statistically significant. 

 

Results 

 

The present study was conducted to explore the 

structural, functional and compositional changes in 

the liver and muscle tissues of Crucian carp exposed 

to environmentally relevant Cd2+ and Pb2+ for 21days 

using FT-IR spectroscopy. The representative FT-IR 

spectra of control, Pb2+, Cd2+ and Cd2++Pb2+ exposed 

fish liver and muscle in the region of 4000 to 500 cm-

1are given in Figure 1 a,b. Shifts in peak positions, 

changes in intensities, and band areas of the infrared 

spectrum were exploited to get important structural 

and functional information about the studied tissues 

(Hayashi et al. 2007).  The observed peak positions of 

the spectra for the studied organs and their 

assignments according to the previous literature are 

presented in Table 1 (Palaniappan and Renju 2009, 

Senthil Kumar and Rajkumar 2014, Sivakumar et al. 

2014).  

As the spectra of the two tissues with multiple 

bands originate from the functional groups of various 

biomolecules including proteins, lipids, 

polysaccharides and nucleic acids, the detailed 

spectral features were investigated in two distinct 

regions for liver (3700 to 3000 cm-1 and 1800 to 800 

cm-1) and three distinct regions for muscle (3600–

3100 cm-1, 3050–2800 cm-1 and 1800–800 cm-1) as 

shown in Figure 2 a,b and Figure 3 a,b,c respectively. 

Structural variations in the studied tissues were 

monitored with help of changes in the frequency of 

the respective bands, while the compositional changes 
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Figure 1. The average FT-IR spectra of Crucian carp’s liver (a) and muscle (b), representing the control, Pb2+, Cd2+ and 

Pb2++Cd2+ exposed groups for 21days  in the region of 4000-500 cm-1. 
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in the corresponding molecules were deduced from 

the accurate area under the characteristic band (Garip 

and Severcan 2010, Toyran et al. 2006). As shown in 

Fig 2a, the detail spectra of control and exposed liver 

tissue in the region of 3700 cm-1 to 2400 cm-1 consist 

of two broad bands. The first band at ~3307 cm-1 is 

mainly assigned to amide A: N− H stretching of 

proteins with little contribution from inter molecular 

O− H group. The second band at ~2925 cm-1 is 

assigned to asymmetric stretching of CH2 which 

mainly corresponds to lipids with little contribution 

from protein, carbohydrates and nucleic acids.  On the 

other hand, Fig 2b depicts the spectral details of liver 

tissue in the region of 1800 cm-1  to 800 cm-1, 

representing several bands at ~1652, ~1543, ~1456, 

~1233, ~1080, ~696 and ~595 cm-1 corresponding to 

amide I:  C=O stretch of α-helix protein, amide II: 

N−H bending and C−N stretching of proteins, CH3 

bending of lipids with little contribution from 

proteins, C–O asymmetric  stretching of glycogen and 

nucleic acids, symmetric PO2− stretching of 

phospholipids and phosphodiester in nucleic acids, 

ring breathing mode in DNA basis and O-H 

deformation respectively. It can be seen from Fig 2a,b 

and Table 2, the absorption frequencies and band 

areas of the selected bands were decreased in the 

exposed groups with the exception of increase in band 

areas at ~1543 cm-1, ~1456 cm-1, ~1088 cm-1 in Pb2+, 

Cd2++Pb2+ and Cd2+,  Cd2++Pb2+ exposed groups 

respectively.  

Fig 3a,b,c shows the detail spectral features of 

control, Cd2+, Pb2+ and Pb2++Cd2+ exposed fish 

muscles. The absorption band at 3364 cm-1 in the 

spectral region of 3600 cm-1 to 3100 cm-1 mainly 

corresponds to amide A and amide B: N–H stretching 

of proteins (Fig 3a). The bands assigned to ~2926 cm-

1  in the region of 3050 cm-1 to 2800 cm-1 belong to 

asymmetric stretch of CH2 investigating main<ly 

lipids with minor contributions from protein, 

carbohydrates and nucleic acids (Fig 3b). The spectral 

Table 1. General vibrational peak assignment of the FT-IR spectra and band position observed for the  liver and muscle 

tissue of Crucian carp after 21 days exposure to Pb2+, Cd2+ and Pb2++Cd2+. 

 

Band Assignment Liver Muscle 

3364 Amide A and Amide B:  mainly N–H stretching of proteins 
 

+ 

3307 
Mainly N− H stretching of proteins with the little contribution from O− H 

stretching of polysaccharides and intermolecular H bonding: amide A 
+ 

 

2926 
,contribution from proteinsasym. stretch: mainly lipids, with the little 2CH 

carbohydrates, nucleic acids 
+ + 

1741 Ester C=O stretch: triglycerides, cholesterol esters 
 

+ 

1653 Amide I (C= O stretching of  α-helix protein) + + 

1543 Amide II (N−H bending and C−N stretching of proteins) + + 

1456 bending mainly lipids, with the little contribution from proteins 3CH + + 

1394 COO− symmetric stretch: fatty acids and amino acids 
 

+ 

1308 stretching of collagen2CH3 CH 
 

+ 

1238 − asym. Stretch: mainly phospholipids and phosphodiester in nucleic acids2PO + + 

1163 C–O asym. stretching of glycogen and nucleic acids + + 

1109 CO–O–C asymmetric stretching: glycogen and nucleic acids 
 

+ 

1088 − sym. Stretch: mainly phospholipids and phosphodiester in nucleic acids2PO + + 

696 Ring breathing mode in the DNA bases + 
 

595 O-H deformation + 
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Figure 1. The average FT-IR spectra of Crucian carp’s liver, representing the control, Pb2+, Cd2+ and 

Pb2++Cd2+ exposed groups for 21days  in the region of 3700-3000 cm-1 (a) and 1800-800  cm-1 (b). 
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region from 1800 cm-1 to 800 cm-1 showing various 

bands at ~1741, ~1653, ~1543, ~1456, ~1394, ~1238, 

~1163 and ~1088 cm-1 corresponding to C=O stretch 

of triglycerides and cholesterol esters, amide I: C=O 

stretching of protein α-helix, amide II: N−H bending 

and C−N stretching of proteins, CH3 bending of lipids 

with minor contribution from proteins, COO− 

symmetric stretching of fatty acids and amino acids, 

CH3 and CH2 stretching of collagen, PO2− 

asymmetric stretching of mainly phospholipids and 

phosphodiester in nucleic acids,  C–O asymmetric  

stretching of glycogen and nucleic acids, and PO2− 

symmetric stretch of phospholipids and 

phosphodiester in nucleic acids respectively. 

Significant variations in the band areas and absorption 

frequencies of the selected bands among control and 

exposed groups can be seen from Table 3 and Fig 3. 

Comparing to control group, a decrease in the 

absorption frequency and bands areas of  the exposed 

groups were observed at wavenumber 3364 cm-1 and 

1741 cm-1 to 1543 cm-1 in the region of 3600 cm-1 to 

3100 cm-1 (Fig 3a) and 1800 cm-1 to 800 cm-1 

respectively. While the band areas significantly 

increased at ~2926 cm-1  for Pb2+, at ~1456 cm-1  to 

1394 cm-1 for Cd2+ and Cd2++Pb2+, at ~1308 cm-1  for 

Cd2++Pb2+, at ~1238 cm-1  for all the treated groups 

and at ~1109 cm-1  for Pb2+ and Cd2++Pb2+ exposed 

group. 

 

Discussion 
 

Freshwater contamination with toxic metal is a 

serious issue in the developing world due to high 

anthropogenic pressure and industrial expansion (Sun 

et al. 2015). An extensive literature is available on the 

bioaccumulation of toxic metals in freshwater fish 

including Cd2+ and Pb2+ (Hosseini Alhashemi et al. 

2012, Low et al. 2015). However, fewer studies have 

explained their effects on the structural and 

compositional changes in various tissues of the 

exposed organisms (Krishnakumar et al. 2012, 

Palaniappan and Renju 2009). In the present study, an 

attempt was made to investigate the individual and 

combined effect of Cd2+ and Pb2+ on the structural and 

compositional changes in the liver and muscle of 

Crucian carp at concentrations closely related to 
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Figure 2.  The average FT-IR spectra of Crucian carp’s muscle, representing the control, Pb2+, Cd2+ and Pb2++Cd2+ 

exposed groups for 21days  in the region of 3600-3100 cm-1 (a), 3050-2800 cm-1 (b) and 1800-800 cm-1 (c). 

 

 

 

Table 2: Changes in the selected FT-IR band area values  and band area ratios of the selected bands of control, 

Pb2+, Cd2+ and Cd2++Pb2+ exposed Crucian carp’s liver tissue. 
 

Band Control Pb Cd Cd+Pb 

3307 c21.616±1.012 b16.648±1.796 b15.498±1.018 a13.117±1.637 

2925 c4.429±0.564 b3.273±0.411 b3.321±0.392 a2.554±0.369 

1652 c8.620±0.828 b5.157±0.256 b5.243±0.195 a2.215±0.212 

1543 c3.232±0.688 d4.544±0.366 b2.253±0.245 a1.514±0.138 

1456 a2.258±0.283 a2.330±0.285 a2.262±0.413 b3.253±0.303 

1163 c0.439±0.036 d0.797±0.109 b0.248±0.035 a0.004±0.002 

1088 ab1.596±0.169 a1.376±0.158 b1.771±0.227 c2.596±0.314 

696 d0.927±0.024 b0.615±0.014 a0.534±0.033 c0.754±0.081 

3307/A1456A a0.104±0.007 b0.140±0.002 b0.146±0.005 c0.248±0.003 

2925/A1653A c1.946±0.031 b1.576±0.017 b1.579±0.022 a0.867±0.008 
Values are means ± SD for five fish in each group 

Values with different superscript letter are significantly different at P<0.05 
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contaminated environment by FT-IR spectroscopy 

(Bing et al. 2013, Khan et al. 2014, Wang et al. 2013, 

Zhou et al. 2007). 

The FT-IR spectra of the two tissues for control 

and exposed groups of Crucian carp revealed 

significant differences in terms of band intensities and 

band areas (Fig 1). The band at ~3364 cm-1in the 

spectra of muscle tissue of Crucian carp, which 

mainly correspond to amide A and amide B: N− H 

stretching of protein revealed significant reduction in 

band areas of intoxicated groups (Fig3a). The 

absorption band at ~3307 cm-1 in the liver tissue 

originates from (amide A) N− H stretching and O− H 

stretching modes in water, since water was removed 

during sample preparation, thus the band can only be 

considered due to protein and polysaccharide in the 

sample. As seen from Fig 2a, a significant reduction 

in the band areas of the three exposed groups suggests 

a proportional decline or deterioration in the content 

of protein and polysaccharides. One of the possible 

mechanisms responsible for protein modification and 

misfolding is oxidative stress, because toxic metals 

such as Cd2+ and Pb2+ are the potential producer of 

oxidative stress (Ashry et al. 2010, Pathak and 

Khandelwal 2006).  

The band at ~2925 cm-1 arising from the olefinic 

region of CH2 asymmetric stretching mainly monitors 

lipids (Bogomolny et al. 2008, Bozkurt et al. 2010). 

Reduction in the corresponding band intensities 

(Table 2 & 3) in the exposed groups revealed a 

decrease in the proportion of unsaturation in acyl 

chain of lipid, which indicates increase in lipid 

peroxidation (Garip and Severcan 2010) with highest 

lipid peroxidation being caused by the combined 

exposure of Cd2++Pb2+. This can also be deduced 

from the selected band area ratios at A1456/3307 and 

A1741/3364 in table 2 and 3 respectively. Increase in the 

content of lipid was thought to be important for 

regulation of membrane functions in a cell (Ibarguren 

et al. 2014). However, in our study, disturbed 

metabolism of lipids might be the possible reason for 

increase in lipid peroxidation in Cd2+ and Cd2++Pb2+ 

intoxicated liver and muscle tissue. 

The band at ~1652 cm-1 and ~1543 cm-1 (Fig 2b 

& Fig 3c) corresponds to amide I and amid II, 

investigating the structural proteins, respectively. 

Intoxication of Cd2+ and Pb2+ shows decrease in band 

areas with maximum decline in the band area due to 

combined exposure of the two metals. Contrary to the 

Cd2+ and Cd2++Pb2+ exposed groups, exposure to Pb2+ 

caused elevation of band area (4.544±0.366) at ~1543 

cm-1  in the liver tissue (Table 2) which further 

revealed that intoxication of Cd2+ and Cd2+ +Pb2+  

might decrease the α-helical structure of protein in the 

studied tissues.  In another study, intoxication of Zn 

also decreased the α-helical structure of protein in the 

muscle of Labeo rohita (Palaniappan and Renju 

2009). The band area at ~1394 cm-1  (Table 3) 

attributed to symmetric stretch of carboxylate, 

increased from 0.735±0.235 to 2.434±0.459 and 

1.541±0.327 in Cd2+ and Cd2++Pb2+ exposed group 

respectively but decreased in the Pb2+ exposed group 

(0.343±0.205). This might confirm the partial 

oxidation of protein and lipid at ~1652 cm-1  and 

~2925 cm-1  position respectively, which resulted in 

high content of  fatty acid and amino acid at ~1394 

cm-1 (Palaniappan and Pramod 2011). A significant 

increase in the band area was noticed at ~1308 cm-1 

for Cd2++Pb2+ exposed group (Table 3), which mainly 

explain changes in collagen, a common fibrous 

protein, with many important functions and an 

indicator of several pathological conditions 

(Sivakumar et al. 2014). Similarly, changes in the 

intensity of phospodiester band at ~1088 cm-1 showed 

an increase in the content of nucleic acids of liver but 

decrease in muscle. Previously a decrease in the 

nucleic acid content was also observed in the arsenic 

intoxicated brain tissue of Labeo rohita (Palaniappan 

and Vijayasundaram 2008). Significant changes in the 

band areas at 3307, 1543, 1163, 696 of liver tissue 

and 3364, 2926, 1741, 1653, 1543, 1456, 1394, 1163 

of muscles tissue further suggested that Cd had more 

drastic effect on the tissue architecture as compared to 

Pb. In a previous study, Tatrai et al. (2001) observed 

Table 3. Changes in the selected FT-IR band area values  and band area ratios of the selected bands of control, 

Pb2+, Cd2+ and Cd2++Pb2+ exposed Crucian carp’s  muscle tissue 
 

Band Control Pb Cd Cd+Pb 

3364 d41.258±2.067 c29.92±2.132 a21.757±2.224 b25.792±2.738 

2926 c2.603±0413 d2.492±0.459 a1.731±0.145 a1.960±0.290 

1741 c4.975±0.545 ab1.366±0.228 a0.652±0.082 b2.073±0.341 

1653 a3.356±0.531 a2.283±0.781 a2.591±0.210 b2.1974±0.482 

1543 a17.803±0.496 a17.531±0.472 c10.533±0.774 b7.196±0.789 

1456 a1.617±0.749 a1.587±0.381 b5.265±0.854 b4.178±0.648 

1394 b0.735±0.235 a0.343±0.205 d2.434±0.459 c1.541±0.327 

1308 a2.388±0.852 a1.403±0.161 a2.169±0.130 b5.266±0.542 

1238 a1.434±0.830 b1.762±0.526 a2.958±0.748 a1.559±0.414 

1163 b2.127±0.462 a0.928±0.097 a0.504±0.407 a0.939±0.376 

1109 b23.301±1.847 a24.573±1.134 b23.317±1.152 c24.100±2.081 

1088 a0.853±0.421 a0.854±0.210 c0.301±0.083 b0.725±0.056 

3364/A1741A b0.121±0.004 a0.045±0.002 a0.030±0.007 c0.080±0.005 

2926/A1543A c6.839±0.081 c7.035±0.023 b6.085±0.031 a3.671±0.067 
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that Cd caused more severe oxidative stress, 

membrane damage and inhibition of protein synthesis 

than Pb during exposure of type II pneumocytes to Cd 

and Pb. 

 The pronounced mechanism of Cd2+ and Pb2+ 

toxicity is the production of reactive oxygen species 

which further aggravate the normal homeostasis of the 

cells thereby affecting the biochemical integrity 

(Dewanjee et al. 2013, Souid et al. 2013). However, 

cells have marked defense mechanism to overcome 

the production of oxidatively modified protein with an 

increased proteolysis (Chondrogianni et al. 2014).  

This might be the possible reason for altered protein 

structure and concentration in the present study 

coinciding with earlier observations about Cd 

intoxicated liver tissue of rate by FT-IR analysis 

(Krishnakumar et al. 2012). Lipid peroxidation is 

another offshoot of oxidative damage caused by Cd 

and Pb due to indirect generation of free radicals (Sun 

et al. 2011). These free radicals attack cell 

membranes and cause disintegration of their vital 

cellular component such as protein and lipids 

resulting in lipid peroxides production (Krishnakumar 

et al. 2012, Brucka-Jastrzębska 2010). However, each 

toxic metal has unique toxicity mechanism, for 

example Pb2+ has the ability to compete for diverse 

polyvalent cations (Ca, Zn, Mg) in their binding sites 

(Garza et al. 2006). This evolutionary characteristic of 

Pb2+ may affect several physiological functions with 

the onset of structural and compositional change in 

the cells and tissues, whereas Cd has the ability to 

reduce the activity of glutathione reductase, which is a 

pre requisite for membrane integrity (Tatrai et al. 

2001). Thus, it is imperative to further investigate the 

toxicity mechanism of these metals and their 

interactions in details. 

The findings of the present stuady suggest that 

exposure to Cd2+ and Pb2+ alone or in combination at 

relatively low concentrations can significantly change 

the biochemical constituents of liver and muscle in 

Crucian carp. In general, a decrease in the protein and 

increase in lipid contents were observed from the 

spectra of the two tissues with marked changes caused 

by the combined exposure of the two metals. 

Alterations in the intensity and band areas at amide I 

responded differently to the exposed groups, revealing 

a differential response of the structural protein to Cd2+ 

and Pb2+ exposure in the liver. Also, exposure to Cd2+ 

and Pb2+ caused conformational changes in protein 

structure with depleted α-helix and alterations in the 

nucleic acids content. Moreover, FT-IR spectroscopy 

was found an effective and rapid technique in 

monitoring the lucid effect of environmental 

contaminants on biochemical integrity. 
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