

Epipelic Algal Flora in the Küçükçekmece Lagoon

Nesrin Polge¹, Atakan Sukatar¹, Elif Neyran Soylu^{2,*}, Arif Gönülol³

¹Ege University, Faculty of Science, Department of Biology, Hydrobiology Section, 35100, 35100, Bornova, Izmir, Turkey.
 ²Giresun University, Faculty of Arts and Science, Department of Biology, Giresun, Turkey.
 ³Ondokuz Mayıs University, Faculty of Arts and Science, Department of Biology, 55139, Kurupelit, Samsun, Turkey.

* Corresponding Author: Tel.: +90.454 216 12 55; Fax: +90.454 216 45 18; E-mail: enkutluk@omu.edu.tr Received 10 Novomber 2008 Accepted 20 Agust 2009

Abstract

This study on epipelic algal flora and its seasonal variations in the Küçükçekmece Lagoon, Turkey was carried out between May 2001 and June 2002. A total of 109 species were identified, most of which belonged to Bacillariophyta (64 taxa). Other taxa identified included members of Cyanophyta (26), Chlorophyta (13), Euglenophyta (5) and Phaeophyta (1). Bacillariophyta were dominant in terms of species number and abundance at five stations. The seasonality of epipelic algal flora was different at all stations. Lower total cell numbers were registered at St. 5. Pennate diatoms especially *Amphora* spp., *Navicula* spp., *Nitzschia* spp. and *Synedra* spp. were dominant during the sampling period. Cluster analysis was applied to the epipelic algal community and produced two major groups reflecting the importance of seasonal variation on the epipelic algal flora.

Keywords: epipelic algae, lagoon, Küçükçekmece Lake, Cluster analysis.

Küçükçekmece Lagünündeki Epipelik Alg Florası

Özet

Küçükçekmece lagünü epipelik alg florası ve mevsimsel değişimi üzerine olan bu araştırma, Mayıs 2001ve Haziran 2002 tarihleri arasında gerçekleştirilmiştir. Çoğunluğu Bacillariophyta (64 takson) divizyosuna ait olan toplam 109 tür belirlenmiştir. Diğer taksonlar Cyanophyta (26), Chlorophyta (13), Euglenophyta (5) ve Phaeophyta (1) üylerine aittir. Bacilllariophyta tür sayısı ve bolluğu bakımından beş istasyonda dominant olmuştur. Daha düşük organizma sayılarına 5. istasyonda rastlanmıştır. Pennat diyatomelerden özellikle *Amphora* spp., *Navicula* spp., *Nitzschia* spp. ve *Synedra* spp. örnekleme süresince dominant olmuştur. Kümeleme analizi epipelik alg kommunitesine uygulanmış ve epipelik alg florası üzerine mevsimsel değişimin etkisini gösteren iki büyük grup oluşmuştur.

Anahtar Kelimeler: epipelik alg florası, lagün, Kümeleme analizi, Küçükçekmece gölü.

Introduction

Lagoons are important ecosystems in terms of ecology and economy. These habitats are highly dynamic and productive shallow ecosystems (Barnes, 1980; Abreu *et al.*, 1994). Because of nutrients carried by rivers, their net primary productivity ranges among the highest measured are in nature and consequently, fish production is very high in these habitats (Kocataş, 1994). Benthic microalgae are recognised as important primary producers in shallow aquatic systems (Underwood *et al.*, 1990; Macintyre *et al.*,

1996). Most studies carried out in freshwater benthic systems focus on epilithic or epiphytic algae growing on hard substrates (McCormic and Stevenson, 1991; Kann, 1993; Hillebrand and Kahlert, 2001). In contrast, studies on epipelic algae or epipsammon communities are rare (Khondker and Dokulil, 1988; Cyr, 1998; Nozaki *et al.*, 2003). Benthic algal communities have been used to assess environmental conditions and the ecological integrity of streams and rivers for over 50 years (Stevenson and Smol, 2002).

The Küçükçekmece Lake is a lagoon that is connected with the Marmara Sea via a narrow channel

[©] Published by Central Fisheries Research Institute (CFRI) Trabzon, Turkey in cooperation with Japan International Cooperation Agency (JICA), Japan

in Turkey. Formerly the water of the lake was saline then it turned to freshwater by the river discharges. Now it is separated from the sea by a set. The lagoon has shown some sign of eutrophication, such as cyanobacterial blooms and deterioration in water quality from late spring to mid-autumn (Albay *et al.*, 2005). Eutrophication is gradually increasing (Topçuoğlu *et al.*, 1999) because of unplanned urbanization around the lake, heavy nutrient inputs and untreated industrial waste. At present, the lagoon is used only for fishing and for recreational purposes.

Diatoms can also be classified according to their salinity tolerance (Snoeijs and Vilbaste, 1994; Snoeijs and Potapova, 1995; Munda, 2005). In the study area there was a wide spectrum of ecologically different types, freshwater, brackish and even marine affinities.

This study was aimed at providing first baseline information on the abundance and seasonal variations of epipelic algal commun0ities in the Küçükçekmece Lagoon.

Materials and Methods

Study Site

Küçükçekmece Lake, situated in the western part of the city of Istanbul (41°00' N-28°43' E) and has a surface area of 15.22 km² and a maximum depth of 20 m (Figure 1). The lagoon is fed by three small rivers the Nakkaş River, the Ispartakule River and Sazlıdere (Oktay and Eren, 1994).

The climate regime of the area is a subtropical type of Mediterrenean macroclimate. In this region, the average annual temperature from 1990 to 2000 was 14.4°C, the annual average rainfall was 666.8 mm (Anonymous, 2000).

Station 1 is situated on the west of lagoon was covered with small-grained clay and sandy sediments. Station 2 is situated in the southwest of the lake and covered with gravel and pebble. Station 3 is situated in the south of the lagoon and is connected with the Marmara Sea via a narrow channel. This station is covered by clay sediments. Station 4 is on the east of the lake. This area of the lake was filled site with rocks and stones. Station 5 is situated in the north and protected side of the lagoon as a small bay. *Ulva* sp. and *Enteromorpha* sp. were important in this region of the lagoon (Figure 1).

The algal community was sampled from five sites at biweekly intervals from May 2001 to June 2002. The algal community was sampled by means of a glass tube 0.8 cm in diameter and 1 meter in length. The pipe was moved in a circular direction over the surface of sediment, releasing the tumb to take up seddiment. Samples were transferred into plastic bottles and fixed with 5% formalin. At least three water-mounted slides were examined for algae and living diatoms from every station to obtain an estimate of algal relative abundance (Round, 1953;

Sládećková, 1962). At least 600 algal cells were counted at 600x magnification. Permanent slides for the identification of diatoms were prepared from the same sample after boiling in a 1:1 mixture of concentrated H₂SO₄ and HNO₃ Slurries were rinsed several times in distilled water until neutral pH was reached. On a slide warmer, slurries were dried overnight on coverslips, and permanent slides for identification of diatoms were prepared from the mounted microscope slides using Naphrax high refractive index medium (Round, 1953). Identifications were carried out at 1000x magnification under immersion oil.

Taxonomic identifications were performed according to Komárek and Anagnostidis (1986; 1989; 1999), Anagnostidis and Komárek (1988); Krammer and Lange-Bertalot (1991a; 1991b; 1999a; 1999b), John *et al.* (2003).

The epipelic algal community data were analysed by cluster analysis (complete linkage method). This technique was applied to Bray-Curtis' dissimilarity matrices computed on abundance values with Biodiversity Professional 2.0.

Results

A total of 116 algal species were identified, most of which belonged to Bacillariophyta (64 taxa). Other taxa identified included members of Cyanophyta (26), Chlorophyta (13), Euglenophyta (5) and Phaeophyta (1). The list of species is given in Table 1.

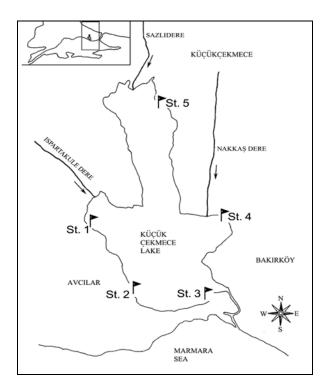


Figure 1. Lake Küçükçekmece with sampling stations.

Table 1. The list of algae present in the epipelon

СУАНОРНУТА	BACILLARIOPHYTA
CHANOPHYTA	Pennales (Continued)
Aphanocapsa sp.	Fragilaria fasciculata (C. Agardh) Lange-Bertalot
Chroococcus limneticus Lemmerman	Fragilaria ulna (Nitzsch) Lange-Bertalot var. oxyrhnynchus (Kützing) Van Heurck
Coelosphaerium kuetzingianum Naegeli	Geissleria acceptata (Hustedt) Lange-Bertalot & Metzeltin
Merismopedia affixa Richter	Gomphonema angustatum (Kützing) Rabenhorst
Merismopedia glauca (Ehrenberg) Naegeli	Gyrosigma acuminatum (Kützing) Rabenhorst
Merismopedia punctata Meyen	Gyrosigma fasciola (Ehrenberg) Griffith et Henfrey
Merismopedia tenuissima Lemmermann	Gyrosigma obscurum (W. Smith) Griffith et Henfrey
Microcystis aeruginosa Kutzing	Gyrosigma peisoneis (Grunow) Hustedt
Hormogonales	<i>Gyrosigma scalproides</i> (Rabenhorst) Cleve
Jaaginema kuetzingianum (Nägeli) Anagnostidis & Komárek	Navicula amphibola Cleve
Jaaginema pseudogeminatum (G.Schmid) Anagnostidids & Komarek	Navicula cryptonella Lange-Bertalot
Jaaginema quadripunctatum (Brühl & Biswas) Anagnostidis &	Navicula exiqua (W. Gregory) Grunow
Komarek	1 (··· · · · · · · · · · · · · · · · ·
Komvophoron constrictum (Szafer) Komárek & Anagnostidis	Navicula gregaria Donkin
Limnothrix planctonica (Woloszynska) Meffert	Navicula exiqua (W. Gregory) Grunow
Oscillatoria obtusa Gardner	Navicula radiosa Kützing
Oscillatoria princeps (Vaucher) Gomont	Navicula radiosa var. tenella Grunow
Oscillatoria subbrevis Schmidle	Navicula ramosissima (Agardh) Cleve
Phormidium chalybeum (Mertens ex Gomont) Anagnostidis & Komárek	Navicula salinarum Grunow
Phormidium formosum (Bory de saint-Vincent) Anagnostidis &	Navicula tripunctata (O. F. Müller) Bory
Komárek Phormidium granulatum (Gardner) Anagnostidis	Navieula tripunctata var schizomanoidas (Van Houral) Datrial
Phormidium granulatum (Gardner) Anagnostidis Phormidium limosum (Dillwyn) P.C.Silva	Navicula tripunctata var. schizomenoides (Van Heurck) Patrick Nitzschia commutata Grunow
Phormidium tergestinum (Kützing) Anagnostidis & Komárek	Nitzschia keutzingiana Hisle
Planktolyngbya limnetica (Lemmermann) Komarkova-Legnerova &	
Cronberg	
Pseudanabaena catenata Lauterborn	Pinnularia sp.
Pseudanabaena limnetica (Lemmermann) Komarek	Pleurosigma elongatum W. Smith
Spirulina sp.	
Tychonema bornetii (Zukal) Anagnostidis & Komárek	Pleurosigma salinarum Grunow
	Surirella minuta Brébisson in Kützing
BACILLARIOPHYTA	Surirella striatula Turpin
Centrales Aulacoseira granulata (Ehrenberg) Simonsen	Synedra fasciculata Ehrenberg var. truncata (Greville) Pantocsek Tabularia fasciculata (C.Agardh) Williams & Round
Aulacoseira italica (Ehrenberg) Simonsen	Tryblionella angustata W. Smith
Coscinodiscus excentricus Ehrenberg	Tryblionella hungarica (Grunow) Frenguelli
Cyclotella meneghiniana Kützing	<i>Ulnaria ulna</i> (Nitzsch) P.Compére in Jahn et al.
Cyclotella ocellata Pantocsek	СНЬОВОРНУТА
Cyclotella radiosa (Grunow) Lemmermann	Volvocales
Melosira moniliformis (O.F. Müller) Agardh	Eudorina elagans Ehrenberg
Melosira nummuloides (Dilwyn) Agardh	Pandorina morum (O.F.Müller) Bory
Melosira varians Agardh	Chlorococcales
Paralia sulcata (Ehrenberg) Cleve	Ankistrodesmus sp.
Pleurosira laevis (Ehrenberg) Compére	Monoraphidium sp.
Pennales	Oocystis sp.
Achnanthes brevipes Agardh var. brevipes	Pediastrum duplex Meyen
Achnanthes brevipes var. intermedia (Kützing) Cleve Achnanthes clevei Grunow var. rostrata Hustedt	Scenedesmus intermedius Chodat Ulotricales
Achnanthes houckiana Grunow var. rostrata Hustedt	Cylindrocapsa sp.
Achnanthes lacunarum Hustedt	Enteromorpha sp.
Achnanthes parvula Kützing	Ulothrix sp.
Amphora coffeaeformis (Agardh) Kützing	Ulva sp.
Amphora commutata Grunow	Cladophorales
Amphora ovalis (Kützing) Kützing	Cladophora sp.
Amphora pediculus (Kützing) Grunow	Zygnematales
Amphiprora costata W. Smith	Spirogyra sp.
Astartiella welsiae (Reimer) Witkowski et Lange-Bertalot	EUGLENOPHYTA
Caloneis amphisbaena (Bory) Cleve	Euglenales
Catacombus gaillonii (Bory) D.M.Williams & Round	Euglena gracilis Klebs
Ceratoneis closterium Ehrenberg	Euglena sanguinea Ehrenberg Euglena subehrenbergii Skuja
Cocconeis pediculus Ehrenberg Cocconeis placentula Ehrenberg var. rouxii (Héribaud et Brun)	Legena subehrenbergu Skuja Lepocinclis sp.
Cleve	сероснико эр.
Entomoneis costata (Hustedt) Reimer	Trachelemonas intermedia Dangeard
Fallacia cryptolyra (Brockmann) Stickle & Mann in Round,	РНАЕОРНУТА
Crawford & Mann	
Fallacia cryptolyra (Brockmann) Stickle & Mann in Round, Crawford & Mann	Ectocarpales
Fragilaria capucina Desmaziérez var. vaucheriae (Kützing)	Ectocarpus siliculosis (Dillwyn) Lyngbye
Lange-Bertalot	

Seasonal variation in the total cell number of epipelic algae was different among stations. Total cell numbers were rather low at St. 5. Highest densities were observed at St. 1 (296974 cells per cm²) in June, lowest at St. 1, St. 3 and St. 4 in January 2002. Cyanophyta reached their maximum level in June 2001 (102215 cells per cm²) and in June 2002 (274207 cells per cm²) at St. 1. *Merismopedia* comprised 92% and 83% of the overall assemblage in June 2001 and June 2002, respectively. The highest

contribution of Bacillariophyta to total cell numbers was on March 17 in St. 1. *Navicula* comprised 97% of total cell number in that month. The seasonal variations of Chlorophyta and Euglenophyta were rather low, comparatively to those of Bacillariophyta and Cyanophyta (Figure 2).

Amphora spp. and Nitzschia spp. were recorded at all dates and at all sampling stations and Oscillatoria spp. were always found in St. 3. The same species were usually found in St. 4 and St. 5.

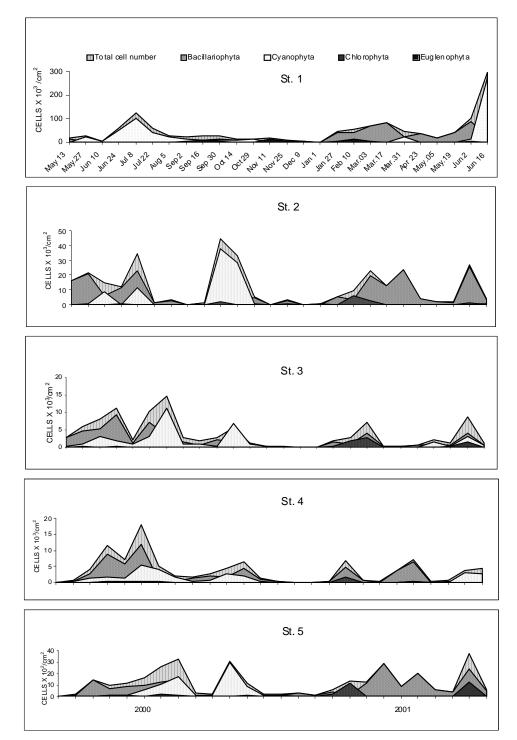


Figure 2. The seasonality of epipelic algae at the sampling stations.

Pleurosira laevis (Ehrenberg) Compére, Coscinodiscus excentricus Ehrenberg, Entomoneis costata (Hustedt) Reimer, Ceratoneis closterium Ehrenberg, Surirella spp., Chroococcus limneticus Lemmermann, Coelosphaerium kuetzingianum Naegeli, Microcystis aeruginosa Kützing, Lyngbya sp., Eudorina elegans Ehrenberg, Pandorina morum (O.F.Müller) Bory, *Pediastrum duplex* Meyen, *Ectocarpus siliculosis* (Dillwyn) Lyngbye were rare at all sampling stations.

The diagram obtained by cluster analysis indicates that at the lowest hierarchical level, two clusters are clearly separated at St. 1 (Figure 3). The first one is formed by a winter sample (January 1).

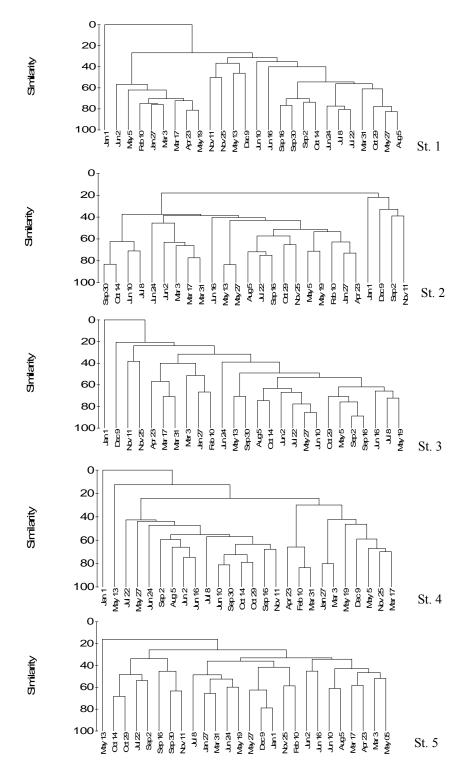


Figure 3. Dendrograms using complete linking of Bray-Curtis similarities at the five stations in Küçükçekmece Lagoon, calculated from cell number data during 2000–2001.

The second group is a large cluster formed by all the other samples. In St. 2, two clusters are separated at the lowest hierarchical level. The first group is formed by all season samples. The second group includes winter and autumn samples characterized by an absolute decline in total cell numbers. The association between May 13 and May 27 samples is most significant. Two clusters are clearly separated at the lowest hierarchical level in St. 3. The first one is formed by only January 1 samples. The second group is a large cluster formed by all season samples. The association between September 2 and September 16 is most significant, with bonds to May 5, and to a lesser degree, October 29. In St. 4 a cluster diagram was constitued by two assemblages at the lowest hierarchical level. The first group includes only winter sample (January 1). The second group is formed by all season samples. In St. 5 a cluster diagram constitued by two assemblages. The first group is formed by only spring sample (May 13) and characterized by the low total cell numbers. The second group is formed by all season samples. The association between December 9 and January 1 is most significant with bonds to May 27.

Discussion

The seasonal development of epipelic algae is strictly associated with temporal variations of some important environmental factors. It is known that during winter, low algal growth is due to low irradiance and water temperature, as well as to the dilution of algal cells along the water column. Generally algal densities were high in spring and summer while algal number decreased in autumn and winter. Epipelic algae community showed a clear decrease at all stations in December and January. Despite substantial research into relationships between diatoms and temperature, studies have shown little evidence of direct temperature control over diatoms (Anderson, 2000). The winter diatom decrease could be related to increased rainfall. Monthly average rainfall reached its highest levels in December (102.4 mm and 73.6 mm) when average water temperature reached its lowest level (5.1°C and 6°C).

In the Küçükçekmece Lagoon some marine species (*Pleurosira laevis* and *Paralia sulcata* (Ehrenberg) Cleve) that were not seen before in any Turkish lakes were registered. *Pleurosira laevis* and *Paralia sulcata* (Ehrenberg) Cleve were highly detected at St. 5 in June 2002 and St. 4 in October 2001, respectively. A halophilic species, *Amphora coffeaeformis* was common at all stations in the Küçükçekmece Lagoon. Although this species is defined as marine species by Round (1984), Patrick and Reimer (1966) stated that this species grew well in the brakish water, freshwater and soil where the conductivity is high. *Achnanthes brevipes* var. *intermedia*, a mesohalobien species (Patrick and Reimer, 1966) was registered at all stations in the Küçükçekmece Lagoon. It is stated that this species is found in eustarine systems and salt lakes (Krammer and Lange-Bertalot, 1991b).

Bacillariophyta were dominant in terms of species number and abundance throughout the year. Diatoms are the most common and diverse group of algae in freshwater and important components of ecosystems. These communities play an important role as primary producers in aquatic ecosystems. They have been extensively used as indicators of environmental change. eutrophication. e.g acidification, salinification, sea level change and land use change, because they have narrow optima and tolerance for many environmental variables. Pennate diatoms, especially Amphora spp., Navicula spp., Nitzschia spp. and Fragilaria spp. were dominant during the sampling period. The epipelic community in the littoral zone of the most lowland lakes is relatively homogenous, often being dominated by small Fragilaria taxa. These taxa take advantage of the favourable light conditions in the shallow water of littoral zones, but they are poor indicators of water quality having a broad tolerance to nutrient conditions (Bennion et al., 2001). Furthermore, diatom species that are facultatively heterotrophic (utilising various sources of DOC), may have a selective advantage under conditions of low irradiance caused by overlaying cells in a benthic mat or by bankside vegetation or turbid water (Hill, 1996) Such an ability has been demonstrated in two common benthic diatom genera, Navicula and Nitzschia (Admiraal and Peletier, 1979). The taxonomic composition of the sediment microflora in our study was almost exclusively restricted to diatoms, as typical of mesotrophic lakes (Aberle and Wiltshire, 2006). Mass occurences of green algae or cyanobacteria are known to be directly linked to high water column nutrient loadings (Aberle and Wiltshire, 2006). The lagoon has shown some sign of eutrophication, such as cyanobacterial blooms and deterioration in water quality from late spring to mid-autumn (Albay et al., 2005). Eutrophication is gradually increasing (Topcuoğlu et al., 1999) because of unplanned urbanization around the lake, heavy nutrient inputs and untreated industrial waste.

Acknowledgement

We would like to thank Güler Aykulu and Meriç Albay for their support.

References

- Abreu, P., Conde, D., Fabian, D., Gorga, J. and Clemente, J. 1994. Particulate and dissolved phytoplankton production of the Patos Lagoon estuary, Southern Brazil: Comparison of methods and influencing factors. J. Plankton Res., 16: 737-735.
- Aberle, N. and Wiltshire, K.H. 2006. Seasonality and

diversity patterns of microphytobenthos in a mesotrophic lake. Arch. Hydrobiol., 167: 447-465.

- Admiraal, W. and Peletier, H. 1979. Influence of organic compounds and light limitation on the growth rate of estuarine benthic diatoms. British Phycological Journal, 14: 197-206.
- Albay, M., Matthiensen, A. and Codd, G.A. 2005. Occurrence of Toxic Blue-Green Algae in the Küçükçekmece Lagoon (İstanbul, Turkey). Environmental Toxicology, 20: 277–284.
- Anagnostidis, K. and Komárek, J. 1988. Modern approach to the classification system of Cyanophytes. 3 -Oscillatoriales. Archiv Für Hydrobiologie. Suppl. 80, Algological Studies, 80: 327-472.
- Anderson, N.J. 2000. Diatoms, temperature and climatic change. European Journal of Phycology, 35: 307-314.
- Anonymous, 2000. Ministry of Agriculture and Forestry, Meteorological Bulletin, Mean and Extreme Temperature and Rainfall Values, Ankara, Turkey.
- Barnes, R.S.K. 1980. Coastal lagoons. Cambridge University Press, Cambridge, 106 pp.
- Bennion, H., Appleby, B.G. and Philips, G.L. 2001. Assessing eutrophication in the Norfolk Broads: implications for the application of diatom-phosphorus transfer functions to shallow lake management. Journal of Paleolimnology, 26: 181-204.
- Cyr, H. 1998. How does the vertical distribution of chlorophyll vary in littoral sediments of small lakes? Freshwat. Biol., 40: 25-40.
- Hill, W. 1996. Effects of light. In: R.J. Stevenson, M.L. Bothwell, and R.L. Lowe (Eds.) : Algal Ecology, Freshwater Benthic Ecocystems. Academic Press, London: 121–148.
- Hillebrand, H. and Kahlert, M. 2001. Effect of grazing and nutrient supply on periphyton biomass and nutrient stoichiometry in habitats of different productivity, Limnol. Oceanogr., 46: 1881-1898.
- John, D.M., Whitton, B.A. and Brook, A.J. 2003. The Freshwater Algal Flora of the British Isles: An identification guide to freshwater and terrestrial algae, The Natural History Museum and The British Phycological Society, Cambridge University press, Cambridge, 700 pp.
- Kann, E. 1993. The littoral algal biocoenoses of Lake Erken and its outlet (Uppland, Sweden). Arch. Hydrobiol. Suppl. 97, Algol. Stud., 69: 91-112.
- Khondker, M. and Dokulil, M. 1988. Seasonality, biomass and primary productivity of epipelic algae in a shallow lake (Neusiedlersee, Austria). Acta Hydrochim. Hydrobiol., 16: 499-515.
- Kocataş, A. 1994. Ekoloji, Çevre Biyolojisi, [Ecology, Environmental Biology] E.Ü. Fen Fak. Ders Kitapları Serisi No:142, E. Ü. Basımevi, Bornova, İzmir.
- Komárek, J. and Anagnostidis, K. 1986. Modern approach to the classification system of Cyanophytes 2-Chroococcales. Archiv für Hydrobiologie Suppl. 73 Algological Studies, 434: 157–226.
- Komárek, J. and Anagnostidis, K. 1989. Modern approach to the classification system of Cyanophytes. 4. Nostocales. Archiv für Hydrobiologie, Suppl. 82, Algological Studies, 56: 247–345.
- Komárek, J. and Anagnostidis, K. 1999. Cyanoprokaryota, Chroococcales, Süßwasserflora von Mitteleuropa. Gustav Fisher Verlag, Stuttgart, New York, 54 pp.
- Krammer, K. and Lange-Bertalot, H. 1991a. 3. Bacillariophyceae. Centrales, Fragilariaceae,

Eunotiaceae, Süßwasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart, New York, 577 pp.

- Krammer, K. and Lange-Bertalot, H. 1991b. 4. Bacillariophyceae. Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema Gesamtliteraturverzeichnis, Süßwasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart, New York, 437 pp.
- Krammer, K. and Lange-Bertalot, H. 1999a. Bacillariophyceae. 1. Naviculaceae, Süßwasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart, New York, 876 pp.
- Krammer, K. and Lange-Bertalot, H. 1999b. Bacillariophyceae. 2. Bacillariaceae, Epithemiaceae, Surirellaceae, Süßwasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart, New York, 596 pp.
- Macintyre, H.L., Geider, R.J. and Miller, D.C. 1996. Microphytobenthos: The ecological role of the 'secret garden' of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production. Estuaries, 19: 186–201.
- McCormic, P.V. and Stevenson, R.J. 1991. Grazer control of nutrient availability in the periphyton. Oecologia, 86: 287–291.
- Munda, I.M. 2005. Seasonal fouling by diatoms on artificial substrata at different depths near Piran (Gulf of Trieste, Northern Adriatic). Acta Adriat., 46(2): 137-157.
- Nozaki, K., Khadbaatar, D., Tetsuji, A., Naoshige, G. and Osamu, M. 2003. Development of filamentous green algae in the benthic algal community in a littoral sandbeach zone of Lake Biwa. Limnology, 4: 161–165.
- Oktay, F. and Eren, R.H. 1994. İstanbul Megapol Alanının Jeolojisi. Basılmamış rapor, İstanbul Büyükşehir Belediyesi İmar Daire Başkanlığı, Şehir Planlama Müdürlüğü, İstanbul, 32 pp. Patrick, R. and Reimer, C. 1966. The Diatoms of The
- Patrick, R. and Reimer, C. 1966. The Diatoms of The United States, Monographic Series, The Academy of Natural Sciences of Philadelphia.
- Round, F.E. 1953. An investigation of two bentic algal communities in Malharm Tarn, Yorkshire. Journal of Ecology, 41: 97-174.
- Round, F.E. 1984. The ecology of Algae. Cambridge University Press, Cambridge, 79 pp.
- Sládećková, A. 1962. Limnological investigation methods for the periphyton (Aufwuchs) community. Botanical Review, 28: 86-350.
- Snoeijs, P. and Vilbaste, S. 1994. Intercalibration and distribution of diatom species in the Baltic Sea. 2. Baltic marine biologists publication. Opulus press, Uppsala, 125 pp.
- Snoeijs, P. and Potapova, M. 1995. Intercalibration and distribution of diatom species in the Baltic Sea. 3. Baltic marine biologists publication. Opulus press, Uppsala, 125 pp.
- Stevenson, R.J. and Smol, J.P. 2002. Use of algae in environmental assessments. In: J.D. Wehr, and R.G. Sheath (Eds.), Freshwater Algae in North America: Classification and Ecology, Academic Press, San Diego: 775–804.
- Topçuoğlu, S., Güngör, N. and Kırbaşoğlu, C. 1999. Physical and chemical parameters of brackish water lagoon, Küçükçekmece Lake, in northwestern Turkey. Toxicol. Environ. Chem., 69: 101-108.
- Underwood, G.J.C. and Kromkamp, J. 1990. Primary production by phytoplankton and microphytobenthos in estuaries. Adv. Ecol. Res., 29: 93-153.