
Turk. J. Fish.& Aquat. Sci. 20(7), 571-581 

http://doi.org/10.4194/1303-2712-v20_7_07 

    Published by Central Fisheries Research Institute (SUMAE) Trabzon, Turkey in cooperation with Japan International Cooperation Agency (JICA), Japan 
 

 

 
 

  
R E S E A R C H   P A P E R 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Evaluation of Posidonia oceanica Map Generated by Sentinel-2 
Image: Gülbahçe Bay Test Site 

Güzel Yücel-Gier1,* , Güven Koçak2, Barış Akçalı1, Tarık İlhan1, Muhammet 
Duman1 
 
 
1Dokuz Eylul University, Institute of Marine Sciences and Technology, İzmir, Turkey 
2İzmir Katip Çelebi University Department of Geomatics Engineering, İzmir, Turkey 

Article History 
Received 30 October 2019 
Accepted 03 February 2020 
First Online 07 February 2020 
 
 

Corresponding Author 
Tel.: +902322785565 
E-mail: yucel.gier@deu.edu.tr 
 
 

Keywords 
Remote sensing 
Sentinel-2 
P. oceanica 
Water transparency 
Secchi disk depth 

Abstract 
 
Remote Sensing offers an effective and low-cost solution for mapping the extent of 
seagrasses and temporally monitoring them routinely. In an in-situ well-explored 
Gülbahçe Bay test site, we used a high-resolution Sentinel-2 image to map the 
distribution of P. oceanica. Atmospheric and water column corrections were applied 
to the raw image. Thematic maps of the area were obtained by supervised 
classification and their accuracy was evaluated by cross-validation. The produced maps 
were also compared to a previously generated high accurate thematic map generated 
by the combination of sub-bottom profiler, side-scan sonar, and very high-resolution 
satellite image data. The classification achieved nearly 88% user accuracy at best. The 
assessment of the accuracy was also carried out in terms of water transparency. For 
this purpose, Secchi disk depths (SDDs) over the study area were inverted from the 
satellite-derived vertical attenuation coefficients by using a model. This model was 
retrieved by tuning the coefficients to 22 local SDD measurements. Sentinel-2 twin-
satellite with its high spatial and temporal resolution data can contribute to mapping 
the P. oceanica cover in shallow waters. Their multispectral data can also be utilized 
for deriving the water transparency in order to determine the application limitations 
of the generated map. 

 

Introduction 
 

In the Mediterranean marine eco-system 
Posidonia oceanica (Linnaeus) Delile (P. oceanica), as an 
endemic species, plays an important role in maintaining 
the balance of the marine ecosystems(Delgado, Ruiz, 
Pérez, Romero & Ballesteros, 1999;Duarte, 2002; 
Pergent, 2006). The richness of Mediterranean coastal 
waters is partially formed by seagrass meadows, which 
cover 20-30% of the surface area of the seabeds at 
depths of 0 to 50 meters (Boudouresque et al.,2012). 

In addition to the above significant roles, P. 
oceanica plays a key role in carbon sequestration 
(Fourqurean et al., 2012), in serving as a buffer from 
coastline erosion (Pergent et al., 2012), in nurseries 

(Giannoulaki et al., 2013), in enriching the fishing terrain 
(Nordlund, Unsworth, Gullström & Cullen-Unsworth, 
2017) and as a bio-indicator (Nordlund et al., 2016). The 
Mediterranean seagrass meadows are under protection 
by international conventions and national legislation, 
i.e., P. oceanica is included in the European Union 1992 
Habitats Directive (92/43/CEE), a directive that 
regulates the EU ‘Natura 2000 areas’ that form part of 
the coastline of all Mediterranean countries. P. oceanica 
is also included in the Mediterranean Action Plan (UNEP, 
2012) and in the annexes of the Bern and Barcelona 
Conventions (1996). In addition to the afore mentioned, 
the Republic of Turkey Ministry of Agriculture and 
Forestry (RTMAF) prohibits the landing, collecting and 
hunting of seagrass species P. oceanica and Zostera 
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noltei (Hornemann). This prohibition complies with 
notification No.4/1 for commercial fishing; notification 
No. 4/2 and for non-commercial fishing (RTMAF, 2016).  

Despite this legislation, these sensitive ecosystems 
are being damaged by coastal tourism, anchorage, 
destructive fishing practices (e.g. bottom trawling), 
uncontrolled development of aquaculture, coastal 
structures and industrial wastes (Cancemi, DeFalco & 
Pergent, 2003; Holmer, Perez & Duarte, 2003). At the 
same time due to their extremely slow growth rate 
(approx. 1-4 cm per year) (Traganos & Reinartz, 2018a). 
It may take many years for these meadows to recover.  

The direct and indirect consequences of their 
decline are numerous, both ecological and economical. 
Another factor is a scarcity of data regarding seagrass 
meadows which makes it difficult to manage and 
conserve ecosystems in the region. For the 
Mediterranean Sea and also for Turkey (Akçalı, Kaboğlu 
& Güçlüsoy, 2019) the present data is based on experts' 
personal knowledge, principally based point-based 
information (Giannoulaki et al., 2013). In order to 
conserve coastal marine environments, it is necessary to 
obtain information on P. oceanica to provide 
background data as indicators of the quality of the 
environment in question, which needs to be evaluated 
reliably and urgently. Habitat mapping constitutes a 
valuable tool in marine spatial planning and coastal 
management (Piazzi, Acunto & Cinelli, 2000; Kostylev et 
al., 2001; Baker & Harris, 2012). Optical remote sensing 
methods provide supplementary sources of information 
for monitoring and mapping seagrass ecosystems. When 
taking into consideration the large areas and remote 
locations involved, satellite remote sensing method is 
both time and cost-effective (Knudby & Nordlund, 2011; 
Hossain, Bujang, Zakaria &Hashim, 2014; Traganos & 
Reinartz, 2018a). To this end, several studies have used 
satellite imagery to map P. oceanica distribution (Fornes 
et al., 2006; Matta et al., 2014; Pasqualini et al., 2005). 

The distribution of Mediterranean seagrass 
meadows has been mapped by a previous study using 
sub-bottom profiler, side-scan sonar and high-
resolution Worldview-2 satellite image, in Gülbahçe Bay 
(İzmir Gulf, Turkey) located in the Eastern Aegean Sea. 
The results were compared with the control data taken 
from 926 sites to determine the total area of P. oceanica 
in the Gülbahçe Bay (Yücel-Gier, Kocak, Akçalı, İlhan & 
Duman, 2019). In this study, the main objective was to 
map the distribution of P. oceanica in Gülbahçe Bay, a 
test area, to determine the effectiveness of Sentinel-2 
satellite imagery. We classified five previously selected 
habitat classes, P. oceanica, C. nodosa, sand, hard 
bottom, and soft bottom in order to produce a thematic 
map illustrating the existence of P. oceanica. Accuracy 
of the generated map was evaluated by using cross-
validation and its dependency with depth and water 
transparency was investigated. For cross-validation, the 
entire field data were divided into two disjoint subsets 
where the training subset was used to produce the map 
and the validation subset to evaluate the map accuracy. 

Material and Methods 
 

Study Area 
 
The Gulf of Izmir is divided, according to its 

topographical, hydrological and ecological features and 
into three regions, the Inner, Middle, and Outer. The 
study area, Gülbahçe Bay, is situated in the outer region 
of the Izmir Gulf in the Aegean Sea. Our study site here 
covers a shallow and semi-closed bay extending over an 
area of 58 km2 (Figure 1a, b). In Gülbahçe Bay there are 
two meadow species; Posidonia oceanica (Linnaeus) 
Delile and Cymodocea nodosa (Ucria). The tidal range is 
about 4 cm during neap tides and about 17 cm during 
springs tides in Izmir Gulf (Alpar, Burak & 
Gazioğlu,1997). A crucial factor for choosing Gülbahçe 
as a study area was the fact that it contains unique 
natural monuments (UNEP, 2012) including three 
different P. oceanica meadow types; tiger meadows, 
atolls and barrier reefs (Yücel-Gier et al., 2019).  
 
Image Data 

 
Sentinel-2 is the satellite system, established to 

observe the earth under the Copernicus program 
implemented by the European Commission consist of 
Sentinel-2A, launched on 23 June 2015, and Sentinel-2B 
launched on 7 March 2017. Each satellite has a 10-day 
revisit frequency thus any given region of the earth can 
be observed every 5 days. The satellites, in a sun-
synchronous orbit, are located at 786 km above the 
earth so that any particular location can be viewed at 
identical local solar times. The Sentinel-2’s MultiSpectral 
Imager (MSI) scans the earth's surface in 13 bands of 
visible, near-infrared (NIR) and shortwave infrared 
(SWIR) electromagnetic spectrums. MSI provides a 
spatial resolution of 10 m in the visible blue, green, red 
and near-infrared bands, while the remaining bands 
have a resolution of 20 and 60 m. The radiometric 
resolution of each MSI band is 12 bits. The image with 
tile ID 
S2A_MSIL2A_20170304T085841_N0204_R007_T35SM
C_20170304T085855 was downloaded from the 
Sentinel Scientific Data Hub 
(https://scihub.copernicus.eu/) for use in this study.  

This Level 1C image was taken on the 4 of March 
2017 at 4:58:41 UTC with a nadir viewing angle of nearly 
4 degrees, covering an area of 100 km x 100 km. A 
distinctive feature of Level 1C images is that they are 
pre-georeferenced and delivered in an orthorectified 
UTM projection with WGS84 ellipsoid, unlike Level 1B 
images given in sensor geometry. Sentinel-2 level 1C 
images are images not corrected for atmospheric 
effects, haze, etc. 
 
Field Data 
 

Field data for the project were collected 
between2014-2016. Multispectral WorldView-2 image 
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from March 20, 2012, was taken as the base reference 
for all data prior to in-situ data collection. Data were 
collected through direct observations with snorkelling, 
SCUBA diving or aquatic camera observation. The 
complete image was explored, and more than 900 
individual locations were selected to be evaluated in 
order to see if data could be compared to in-situ data 
taken two years later. Based on this data, a total of 449 
manually generated polygons (containing 10940 pixels), 
belonging to five different habitats were used within the 
scope of this classification (Figure 1c). Five classes were 
identified as P. oceanica, Cymodocea nodosa, hard 
bottom, mud and sand in the study for further thematic 
mapping. Bathymetry data were calculated within a 
previously completed project (Yücel-Gieret al., 2019). 

We used Secchi disk depth (SDD) data in the study 
as a criterion for water transparency in order to present 
their relation with the classification results. Secchi disk 
data were taken at 22 different locations on three 
consecutive days (21-22-23 March 2017) in the Gulf of 
Izmir where one data location lies within in the study 
area as shown in Figure1b (IMST, 2017). 
 
Image Analysis Methodology 
 

Within the scope of the study, coastal aerosol, blue 
and green bands (B1, B2, and B3) of Sentinel-2 image 
were used for benthic habitat mapping. The remaining 
bands having longer wavelengths were not included in 
the study since they experience more absorption 

  

 

Figure 1. a) General view of Izmir Gulf and its surrounding in the Aegean Sea. Black rectangle shows the downloaded Sentinel-
2 image’s 100 km x 100 km coverage area. b) zoomed view of the rectangle in a): Red frame denotes the study area and yellow 
circles indicate Secchi disk depth (SDD) measurement points. These measurements were used to calibrate the satellite-derived 
vertical attenuation values to SDDs for each pixel by a model function within the entire Gulf. SDDs in the study area were 
obtained by this model (see Results section). c) The study area; Gülbahçe Bay. White circles show field data locations. 
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(Horning, Robinson, Sterling, Turner, &Spector,2010). 
The reflectance values of B2 and B3are given at a ground 
sampling distance (GSD) of 10 m. Therefore, GSD for B1 
was resampled from 60 m to 10m by using bilinear 
interpolation. The European Space Agency's (ESA) 
software Sentinel Application Platform (SNAP 6.0) was 
used for this downsampling. 
 
Atmospheric Correction 
 

Sentinel-2 Level 1C delivers reflectance values 
from the top of the atmosphere (TOA). Therefore, 
atmospheric correction was required to acquire the 
reflectance at the bottom of the atmosphere (BOA), 
namely the reflectance from the water surface. Sen2Cor 
toolbox (v.2.5.5) available under SNAP was used to 
achieve the correction from TOA to BOA. Sen2Cor 
calculates the correction for Sentinel-2using a database 
of 24 look-up tables containing atmospheric conditions 
observed on earth. Among the parameters, mid-latitude 
summer atmospheric conditions were selected, and 
aerosol type was set to rural due to the close proximity 
of the study area to land. Another parameter, ozone 
input, was set to automatic to be obtained automatically 
by the Sen2Cor software. Sun de-glinting was not 
exercised because no sun-glint was observed on the 
image. 
 
Masking 

 
Land pixels were disregarded during the process as 

the study was based on benthic habitat mapping. For 
this purpose, land areas were masked out manually by 
digitizing a georeferenced WorldView-2 image with 2m 
spatial resolution. We also adopted a depth mask of 17 
m since it marked the limit of our P. oceanica samples 
obtained in the field.  
 
Water Column Correction 

 
In benthic habitat mapping, the water surface 

reflectance should be corrected for depth effect in order 
to better identify substrates. This is known as water 
column correction and the image-based method 
proposed by Lyzenga (1981) was used in this study. It is 
based on the assumption that the ratio of the bottom 
reflectance of an object in two bands is constant for all 
objects. The depth-invariant (𝐷𝐼) index for each pixel 
can be obtained for the ith and jth bands by using the 
water surface and deep water reflectance: 

 
𝐷𝐼𝑖𝑗 = 𝑙𝑛(𝑅𝑖,𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝑅𝑖,𝑑𝑒𝑒𝑝) −

𝑘𝑖,𝑑

𝑘𝑗,𝑑
𝑙𝑛(𝑅𝑗,𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝑅𝑗,𝑑𝑒𝑒𝑝)     (1) 

 
If the atmospheric correction has already been 

applied to the image, deep water reflectance can be 
dismissed (Green et al, 2000). The numerical value 
denoting the ratio of the diffuse attenuation coefficients 
𝑘𝑖,𝑑

𝑘𝑗,𝑑
need be calculated using the reflectance values of 

the same class sampled at varying depths. Unlike linear 
regression, where a parameter is taken as an 
independent variable, the ratio is calculated by treating 
both variables as independent by means of the following 
equation (Lyzenga, 1981): 

 
𝑘𝑖,𝑑

𝑘𝑗,𝑑
= 𝑎 + √𝑎2 + 1       (2) 

 
The parameter a in Equation (2) can be obtained 

with the help of the variances and the covariance of the 
two bands: 

 

𝑎 =
𝜎𝑖𝑖 − 𝜎𝑗𝑗

2𝜎𝑖𝑗

 

 

𝜎𝑖𝑗 = 𝑚𝑒𝑎𝑛(𝑿𝒊𝑿𝒋) − 𝑚𝑒𝑎𝑛(𝑿𝒊) ∙ 𝑚𝑒𝑎𝑛(𝑿𝒋).  

 
𝑿𝒊 and 𝑿𝒋 in the above equation indicate the 

vectors in which numerical values 𝑙𝑛(𝑅𝑠𝑢𝑟𝑓𝑎𝑐𝑒 −

𝑅𝑑𝑒𝑒𝑝)at sampling points are held for the relevant 

bands. 
 
Samples from the sand class were chosen as 

reference for the estimation of the ratios in Equation (1) 
since the sand class can be distinguished more clearly 
than the other habitat classes. The numerical values 
were computed for a combination of the bands B1, B2, 
and B3. 

 
Supervised Classification and Accuracy Assessment 

 
To produce a thematic map, mostly the supervised 

classification method is used where all image pixels are 
grouped into predefined classes based on the spectral 
reflectance of a smaller set consisting of ground truth 
pixels. The producer labels the ground truth pixels 
belonging to each class upon on-site visiting of selected 
locations which should be fairly evenly distributed 
across the whole image. A chosen classifier predicts the 
classes of the remaining unlabelled pixels by using the 
information from the relatively small ground truth data 
set. Among several classifiers, we selected the support 
vector machine (SVM) method as the classifier to 
generate the benthic habitat map. SVM is one of the 
classification methods used for benthic habitat mapping 
in recent studies (Traganos and Reinartz, 2018a, b; 
Poursanidis, Traganos, Reinartz & Chrysoulakis, 2019). 
As in all classifiers, spectral reflectance values of the 
ground truth pixels span the n-dimensional space where 
n denotes the number of bands. In this feature space, 
two classes are separated from each other by a decision 
boundary called hyperplane. This hyperplane is 
estimated by the pixels lying at the margin of the two 
classes which are termed support vectors. In order to 
increase the separability between classes, the feature 
space is projected onto a higher dimensional space by a 
nonlinear function (kernel function) where a linear 
hyperplane can be estimated as the decision boundary 
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(Richards, 2013). This study employed the LibSVM 
library available in the EnMAP-Box software (van der 
Linden et al, 2015) in order to carry out SVM 
classification. We used a Gaussian radial basis function 
kernel for projecting the feature space in the 
classification. 

Two different thematic classifications were carried 
out within the study. The first classification was devised 
to determine the five different classes in the study area. 
These classes were identified as P. oceanica, C. nodosa, 
sand, hard bottom, and soft bottom. In the second 
classification, a binary thematic map was obtained with 
the P. oceanica class and the non-P. oceanica class.   

k-fold cross-validation was used to test the 
accuracy of the thematic map generated in the study. 
Here, the number of ground truth pixels for each class 
was divided by an integer k to form an approximately 
equal number of pixels. The classifier was trained by the 
k-1 subset of pixels where the remaining subset was 
used for validating the generated solution. The 
classification was thus repeated k times where each 
time one of the k subsets was reserved for the 
validation. In this way, k user and producer accuracies 
were obtained for each of the classes. 
 
Vertical Attenuation Coefficient 
 

The accuracy of the benthic habitat classification 
depends on the power of the light coming from the 
substrates. Apart from atmospheric conditions, the 
optical properties of the water determine the amount of 
photon flux onto the sensor. Two types of optical 
properties can be identified: Inherent optical properties 
(IOPs) depend only on the medium and will be given 
with absorption and scattering coefficients. Apparent 
optical properties (AOPs) depend not only on the 
medium but also on the geometric (directional) 
structure of the light field. They define radiometric 
quantities like downwelling and upwelling radiances 
(Mobley, 1994). 

The downward plane irradiance at depth z for a 
band with wavelength 𝜆 can be modeled with 

 
𝐸𝑑(𝑧, 𝜆) = 𝐸𝑑(0, 𝜆)𝑒−𝐾𝑑𝑍   (3) 
 
where 𝐸𝑑(0, 𝜆) denotes the irradiance at the water 

surface. Equation (3) models the decay of the irradiance 
from the water surface to an increasing depth z. 𝐾𝑑  is 
defined as the vertical attenuation coefficient which 
specifies the speed of the decay. Increasing 𝐾𝑑  will result 
in less irradiance from deeper layers of the water and 
thus in lesser penetration of the incoming light. 

In this study, we utilized the vertical attenuation 
coefficient obtained by the C2RCC processor in order to 
relate the classification accuracy to the light penetration 
in the coastal environment. C2RCC (Case 2 Regional 
CoastColour) is a processor which can deliver the 
attenuation coefficient 𝐾𝑑(𝜆 = 489) at each image 
pixel together with the IOP coefficients. It also provides 

the minimum of the three attenuation coefficients 
(min 𝐾𝑑) in the first three bands having the least 
wavelengths of the Sentinel-2 bands. C2RCC is a neural 
network-based processor into which TOA reflectance 
will be fed. Neural networks are trained by using a large 
database of simulated water leaving radiances and 
related TOA radiances. Hydrolight model is used for in-
water modelling (Brockmann, Doerffer, Peters, Kerstin, 
Embacher & Ruescas, 2016). 
 

Results 
 

Image Processing 
 

Atmospheric correction was applied to the raw 
Sentinel-2 level 1C image and the level 2A corrected 
image referring to the bottom of the atmosphere (BOA) 
was obtained. The implementation of the correction 
greatly reduced the cloud and haze present on the 
entire tile which resulted in a clear improvement 
especially in the northern and eastern parts of the tile. 
Compared to the raw image, reflectance from the 
seabed was more pronounced in areas close to the 
shore. 

For obtaining the DI composite, the ratios of the 
diffuse attenuation coefficients were computed by using 
sand class reflectance samples. We treated the log-
transformed reflectance as independent variables and 
estimated the ratios to be 0.45, 0.30 and 0.72 by using 
the Equation (2) for B1/B2, B1/B3, and B2/B3, 
respectively. Those ratio values were then used for 
computing the depth-invariant (DI) indices over the 
whole image pixel location by the Equation (1). 

 
Accuracy Assessment  

 
The three images obtained in this study were 

subjected to supervised classification based on ground 
truth data. The initial data is the intact Level 1C image of 
the TOA downloaded from the Sentinel Data Hub 
without any correction. The second image is the BOA 
image obtained by applying the atmospheric correction 
to the Level 1C image. The last one is a DI composite that 
is obtained by applying water column correction with 
the three band-ratios. These images were classified for 
producing the thematic maps of two sets containing five 
and two cover types, respectively. The classifications 
were repeated on the three images of each set and they 
will be denoted hereafter as 5-class and binary 
classifications. 

We carried out 6-fold cross-validation for accuracy 
evaluation on each of the six solutions. Table 1shows the 
accuracy results. While classifying the Level 2A image 
produced the largest overall accuracy (OA) for the 5-
class case, the binary map generated by raw Level 1C 
image showed the highest OA score. The largest P. 
oceanica user and producer accuracies (UA, PA) were 
also obtained with the same images. Pairwise 
differences between the P. oceanica UA values of the 
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three images were tested for the significance by using a 
t-test for two population means with unknown and 
unequal variances (Kanji, 2006). The tests were 
performed separately for each of the 5-class and binary 
cases. All three UAs differ from each other at a 5% 
significance level for the classifications carried out with 
five cover types. UAs acquired with Level 1C and Level 
2A images with binary classification showed no 
significant difference. DI composites produced the least 
UAs for both 5-class and binary cases. 

Thematic maps produced by classification were 
assessed based on the ground truth data points inside 
polygons distributed sparsely over the study area. This 
allows only a limited evaluation of the classification 
results at discrete locations. A total of 10490 pixel 
locations were used for PA and UA calculations in 
approximately 29.2 sq km process area bounded by a 
17m depth mask. These pixels were included inside 449 
polygons which correspond to a distribution density of 
some 15 polygons/sq km. For a more continuous and 
uniform comparison of the classification results, we 
used an existing thematic ground truth map. This 

reference map was generated by the synergistic 
combination of WorldView-2 image classification, sub-
bottom profiler, and side-scan sonar data within a 
project (Yücel-Gier et al., 2019). The comparisons were 
carried out for six image classification maps. Prior to 
comparison, each map was low-pass filtered by using a 
5x5 pixel kernel size and isolated pixels were removed 
with 8-pixel connectivity. The comparisons revealed that 
Level 2A binary classification achieved the best UA with 
87.9% whereas2.2% lower UA was acquired by the 
classification with 5 cover types. Eliminating the depth 
effect with the DI index did not improve the accuracies 
for both 5-class and binary classifications, which have 
the worst numerical values amongst all. Accuracy values 
agree with the PAs rather than the UAs given in Table 1. 
The PAs were greater than UA because a larger set of 
ground truth data were used for training the classifier in 
k-fold cross-validation. 

Figure2a shows the Level 2A binary map and 
Figure2b displays the distribution of false positives (FPs) 
and false negatives (FNs) extracted by differencing the 
binary map and the ground truth map. FPs denote the 

Table 1. Classification accuracies using ground truth data (the highest OA and UA values are given in bold) 

with five cover types S2 Level 1C S2 Level 2A DI Composite 

Classes UA PA UA PA UA PA 

P. oceanica 79.7±0.36 83.8±0.40 80.6±0.36 84.1±0.40 78.2±0.39 79.8±0.41 
C. nodosa. 43.8±0.43 26.8±3.26 35.6±0.46 31.8±2.49 35.3±0.46 33.8±2.41 
Hard bottom 70.6±0.48 58.3±3.73 64.5±0.49 54.2±3.84 44.6±0.49 51.4±3.17 
Sand 51.9±0.42 75.1±1.49 59.0±0.46 65.4±1.78 60.8±0.47 61.1±1.97 
Soft bottom 72.7±0.46 65.9±0.65 74.2±0.45 69.2±0.63 68.9±0.46 66.3±0.63 

OA 75.1 76.1 72.6 

with binary cover types UA PA   UA    PA      UA       PA 

P. oceanica 78.0±0.34 85.5±0.39 77.4±0.34 85.8±0.39 76.1±0.37 82.6±0.40 
Non-P. oceanica 78.7±0.45 69.0±0.55 78.9±0.46 67.8±0.56 75.0±0.46 66.7±0.57 

OA 78.3 77.9 75.7 
OA = Overall Accuracy, PA = Producer Accuracy, UA = User Accuracy 
All numbers are given in percentages. The error term is standard deviation. 

 
 
 

  

Figure 2. a) Filtered binary map obtained by the classification of the Sentinel-2 Level 2A image, b) comparison of the map-a with 
an existing ground truth thematic map. FNs show pixels where the classifier could not detect. FPs show the locations of 
incorrectly detected pixels. 
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incorrectly labelled pixels though not available in the 
ground truth map. FNs, on the other hand, are true P. 
oceanica locations that were not revealed by the 
classifier. The black background other than land mask 
displays correctly classified true positives (TPs: P. 
oceanica) and true negatives (TNs: non-P. oceanica). The 
density of the erroneous pixels increases to the 
boundary of P. oceanica covers. 

 
Variation of accuracy with depth and water 
transparency 

 
We now examine how the accuracy varies with 

depth and water transparency. The analysis will give 
insight into the light penetration condition in the study 
area and its impact on classification accuracy. Hereafter 
the raw unfiltered binary map obtained by the Level 2A 
image classification will be used for the analysis. 

The bar plot in Figure3a shows the relation 
between the number of P. oceanica ground truth pixels 
and the depth at which these pixels are located. Nearly 
two-thirds of all P. oceanica ground truth pixels were 
sampled at depths between 0-10 m. Above 10 m, the 
number of P. oceanica populations begin to decrease. 
The sharp decrease in the number of the samples of 
about 50% from 8-10 interval to 10-12 interval explains 
that less P. oceanica pixels could be identified in the 
Sentinel-2 image at depths greater than 10 m. At 16-17 
m interval, only 36 samples were collected which 
correspond to 0.6% of all P. oceanica ground truth 
pixels. 

In order to show the change of the classification 
accuracy with depth, the number of correctly classified 
P. oceanica pixels in each 1 m depth interval was divided 
into the total number of P. oceanica pixels in that 
interval. In this way, true positive (TP) values for P. 
oceanica class were computed for each interval. 
Cumulative TP (CTP) was calculated likewise but 

referred to the interval beginning from zero to the depth 
explored (Figure3a). At 0-1 m interval, 82.9% TP was 
achieved. The TP in 1m interval increased to 96.5% at 8 
m depth, the largest of all TPs. Beginning from 8 m, TP 
fell to lower values and it became 33.3% in the 16-17 m 
interval. CTP, on the other hand, increased to its 
maximum 92.0% at the end of 8 m depth and after this 
point, it showed a smooth constant decline resulting in 
the overall CTP of 86.3%. This value is within the 
confidence interval of the PA in Table 1 for the Level 2A 
binary map, which was adopted for the analysis.  

In this study, we also investigated whether the 
classification accuracy is associated with the light 
transmittance of the benthic habitat. For this purpose, 
we used the vertical attenuation coefficient (𝐾𝑑) which 
was derived by the C2RCC processor. This processor can 
deliver among several IOPs and AOPs the minimum of 
the vertical attenuation coefficients of the Sentinel-2’s 
B1, B2, and B3 bands. The lowest 𝐾𝑑  of the three bands 
at a pixel location is denoted here as min 𝐾𝑑. In order to 
use image-derived, pixel-based 𝐾𝑑  values, their 
relationship with the field must be examined. We 
calibrated min 𝐾𝑑  values to the SDD measurements 
made at 22 locations distributed in the Izmir Gulf (Figure 
1b). A power model was fitted to the data set (Alikas & 
Kratzer, 2017) and the model function was obtained as 

 
𝑦 = 3.373𝑥−0.5211   (4). 

 
Measured SDDs can thus be explained by the 

min 𝐾𝑑  derived by C2RCC at 89% (Figure4a). SDD for any 
location can be computed by putting the min 𝐾𝑑  value 
at the right-hand side of eq. (4).  

For the analysis of the SDD variation with depth, 
we calculated the SDDs in Equation (4) (herein denoted 
as computed SDD) by using min 𝐾𝑑  values at 449ground 
truth polygon centers. The depths of these polygon 
centers were plotted against the computed SDDs in 

  
Figure 3. a) Variation of accuracies with bathymetric depth and b) with SDD. Bar plots show the number of pixels in 1m intervals. 
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Figure4b. Computed SDDs increase with increasing 
sample depth and reach a plateau. Although the depths 
of the samples increase computed SDDs fluctuate 
around a nearly constant value. A proper model must be 
fitted to the point field in order to compute this limit 
value. Among several models, a second-order 
polynomial was adopted. The least-squares estimator 
with robust bisquare method was used for reducing the 
effect of outlying points. The model function is given as 

 
𝑦 = −0.02792𝑥2 + 0.8549𝑥 + 5.50  (5). 
 
The numerical value at which the depth and the 

computed SDD are identical was obtained by solving the 
roots of Equation (5).  

Figure3b gives the variation of P. oceanica 
classification accuracy depending on the SDDs. No 
samples fell into the 0-3 m interval. The largest samples 
came from 10-11 m SDD, nearly one-third of all P. 
oceanica ground truth pixels. TPs were extremely 

variable in the interval between 3 m to 8 m SDDs and 
they correlate strongly with the number of pixels. The 
maximum CTP accuracy was obtained at 11 m SDD with 
92.4% which dropped to the overall value of 86.3%. 
Figure3a and 3bshow the dependency of TPs and CTPs 
of P. oceanica ground truth pixels against the 
bathymetry and the computed SDD, respectively. The 
graphics depict the accuracy variation in a single variable 
and for example, a selected depth includes the 
contribution of pixels from different SDDs having the 
same depth. Classification accuracy can be better 
understood when the TPs are investigated in both 
variables. The color matrix in Figure5a illustrates the 
number of P. oceanica ground truth pixels as a function 
of two variables. Horizontal and vertical axes denote 
bathymetry and computed SDD, respectively and each 
matrix element is computed by counting the number of 
pixels falling into the related 1m x 1m grid.   

Although 17 pixels originate from 16-17 m depth 
grid, their SDDs do not exceed 12 m. SDDs reach a 

 

Figure 4. a) The relation between the Secchi Disk Depth (SDD) measurements and C2RCC-derived min(Kd), b) Computed SDDs 
vs bathymetric depths for 449 ground truth polygon centers. 

 

  

Figure 5. a) Color matrix showing the number and b) the TP percentages of the P. oceanica pixels in 1 m grid intervals. 
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maximum value lower than 15 m. The white diagonal 
line goes through the grids where the bathymetric 
depths and the SDDs are identical. Upper triangular off-
diagonal elements host pixels having lower depth values 
than SDDs whereas lower triangular elements have 
larger depths than SDDs. 16% of all P. oceanica pixels 
belong to the lower triangle which is an indication of the 
diminishing reflectance from the bottom. The number of 
counts decreases by moving away from the diagonal to 
the right. 

Figure5b displays TPs in each grid. The grid values 
represent percentages and were calculated by dividing 
the number of correctly classified pixels by the total 
number of pixels given in Figure5a. TPs at 2-14 m depth 
interval with 11 m SDD were obtained over 85%. 
Similarly, the grid values at 12 m SDD varies between 85 
and 100% from lower depths to 12 m and then descend 
to 29% at 17 m bathymetric depth. Grids with SDD 
values larger 12 m exhibit highly variable TPs. 
 

Discussion and Conclusions 
 

The ecosystem services provided by seagrass beds 
have been widely acknowledged in the Millennium 
Ecosystem Assessment (MEA). These include 
provisioning services, such as food, regulating services 
pertaining to atmospheric and climate regulation, waste 
processing, as well as protection from natural hazards 
such as floods, storms, and erosion, not to mention a 
series of cultural services (Duarte, C. M, 2000; Orth et 
al., 2006; Cullen-Unsworth & Unsworth, 2013). 

The study area was chosen on two grounds: first, 
the area contains natural monuments with three 
different types of meadows that call for urgent 
protection. The second, the socio-economic fact, that 
fisheries here are the mainstay of the local population. 
This is reflected by the existence of three Fishery 
Cooperatives that are currently active in the area Özbek, 
Gülbahçe and Balıklıova (Ünal, Göncüoğlu & Yencan, 
2009), whose total member number is 137 verbally 
confirmed by the president of the Fishery Cooperative 
Gülbahçe-Balıklıova, in addition to 600 individuals 
making a living from fishery related occupations (Tokac 
et al., 2010). In their studies of Jamaican seagrass 
meadows, Stoner (2003) and Behringer et al., (2009) 
have shown that the most abundant species landed in 
commercial fin-fish fisheries use seagrass meadows over 
various periods in their life cycles as their nursery and 
feeding habitats dictate. Similarly, our own field study of 
Gülbahce, pinpoints the commercial character of a 
number of species abundant in seagrass meadows 
(approximately 20 species). 

The detailed map of P. oceanica in Gülbahçe bay 
was produced using multidisciplinary data acquisition 
methods. These include side-scan sonar imaging, sub-
bottom profiler data, Worldview-2 satellite image, and 
in-situ data taken from diving (SCUBA and Snorkelling) 
and action camera images (Yücel-Gier et al., 2019). As a 
result of this study, a test area was created, and it was 

possible to compare with other seagrass meadows 
mapped in other Mediterranean countries. 

In this study, raw Level 1C, atmospheric correction 
Level 2A and DI composite images were classified with 
SVM. The use of DI composite did not increase accuracy, 
but atmospheric correction to the raw image was found 
to produce higher accuracy values. Discrepancies 
between the classification map and the ground truth 
map were mostly observed at the boundaries of P. 
oceanica covers. These boundary locations lie mainly on 
P. oceanica-soft bottom interfaces. The SVM classifier 
could not discriminate the P. oceanica pixels at these 
transition locations because their reflectance values 
resemble the non-P. oceanica pixels. 

The largest samples came from SDDs of 10-11 m, 
nearly one-third of all P. oceanica ground truth pixels.P. 
oceanica pixels could be identified by the classifier 
effectively up to 13 m depth. The cover was detected 
from Sentinel-2 Level 2A image with 79.4% and 87.9% 
producer and user accuracies, respectively. Traganos & 
Reinartz (2018a, b) reported better accuracies in their 
highly transparent test site where seagrasses were 
detected up to depths of 16.5 m. 

Light is a very important parameter for seagrass 
distribution. The lower limit of seagrasses depends on 
light conditions, turbidity, etc. (Collier, Lavery, Masini, & 
Ralph, 2007; Ochieng, Short & Walker, 2010). However, 
in accordance with the anthropogenic impact, the light 
reduces and this causes seagrass to diminish all around 
the world (Green & Short, 2003). P. oceanica needs light 
for photosynthesis, and there is a direct relationship 
between the plants’ access to light and their growth, 
survival and depth penetration (Kenworty & 
Fonseca,1996). The depth for such plants and the light 
penetration as studied in different surveys and a Secchi 
disc determines how deep the plant can survive 
(Dennison et al., 1993).  

The presence of P. oceanica in Figure 3b appears to 
be more intense at a depth of 11-meter Secchi disc. 
Color matrix showing (5a) the number of P. oceanica 
pixels in 11 meters high. The depth was obtained to be 
11.7 m and computed SDD changes from this point on 
very slowly despite a larger increase in the depth itself. 
Computed SDD increases by only 0.3 m and reaches 12.0 
m, at depth 17.0 m which is the P. oceanica limit value 
observed in the study area. Any reflectance from the 
depths greater than 11.7 m will be acquired not from the 
sea bottom but from the water column above it. The 
mapping using the satellite image also increases the 
opinion that using Secchi disk and sampling accordingly 
will speed up mapping process. 
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